
MASSACHUSETTS INSTITUTE O F TECHNOLOGY

RESEARCH LABORATORY OF ELECTRONICS

Technical Report 450

LINCOLN LABORATORY

Technical Report 396

September 13, 1965

AN EXPERIMENTAL FACILITY FOR SEQUENTIAL DECODING

C. W. Niessen

This report is based on a thesis submitted to the Department of Elec-
trical Engineering, M. I. T. , September 3, 1965, in partial fulfillment
of the requirements for the Degree of Doctor of Science.

-' I

Abstract
L- .

Sequential decoding is one of the few practical methods known for communicating over
a noisy channel which, for interesting rates, attains the error-correction capability pre-
dicted by Shannon's coding theorem. Since analytical investigations a re limited by the
difficulty of the mathematics involved, experimental studies into the behavior of sequen-
tial decoding are necessary. This report describes the system design and implementation
of a facility for the experimental study of sequential decoding that may be used at M. I. T.
by graduate researchers in communications theory. Flexibility and ease of use are the
primary requirements of this system.

Thorough investigation of the characteristics of sequential decoding and likely prob-
lems to be studied led to a system based upon the Project MAC PDP-6 computer. The
design reflects constraints imposed by time, cost, equipment availability, and the antic-
ipated class of users. A portable data-acquisition system, consisting of a digital tape
recorder and analog-to-digital conversion equipment, is provided to make available to the
computer the outputs of experimental demodulation equipment. The experimenter can
decode the acquired data sequentially in accordance with an algorithm specified and eas-
ily written by him in a version of Fortran modified for this purpose. The modified
Fortran contains statements for the use of special subroutines provided, such as a con-
volutional coder. The program is run withirl a monitor system which handles most input-
output automatically and provides for man-machine interaction with the program. The
monitor also collects statistics on the decoding process to aid the user in evaluating his
algorithm.

All sequential decoding algorithms may ultimately be described as tree search algo-
rithms in which it is desired to find the "best" path through a tree. A display of the paths
searched by the algorithm has therefore been made the principal tool for the man-
machine interaction. The user watches this display and controls the running of the algo-
rithm via a light pen and commands typed to the monitor.

The system has been successfully implemented and tested, and experimental results
a re described.

TABLE OF CONTENTS

I

I1

111

IV

v

SYSTEM DESIGN AND OBJECTIVES
-4. Introduction
B. Description of Sequential Decoding
C. System Design Considerations

DATA-C OLLECTION SYSTEM

A. Form of Input
B. Recording Equipment
C . Restrictions on Channels
D. Hardware for Playback
E. Ordered Lists
F. Programs for Ordered Lists

OPERATING SYSTEM
A. Available Subprograms
B. Output Display
C. Monitor System

SPECIAL LANGUAGE

A. Requirements to Describe Algorithln
B. Requirements to Manipulate Coder
C. Requirements t o Control Display
D.
E. Requirements t o Collect Statistics

EXAMPLES, TESTS &ID CONCLLTSIONS

A. Example Chosen

B. Example of Display
C. Example of Statistics
D. Conclusions

Requirements to Reference Input Data

APPENDIX A - User 's Manual

I. Introduction
11. Data Collection

111. Ordered List Formation
VI. Writing the Algorithm
V. Running the Programs

APPENDIX B - Data-Collection System

APPENDIX C - Display of Tree

APPENDIX D - Syntax-Directed Compiler

Acknowledgments

References

11

1 2

1 2

1 3

1 4

14

15

16

16

20

23

25

25

26

27

27

28

28

28

30

3 3

34

37

37

37

38

40

60

67

69

72

75

7 6

iii

AN EXPERIMENTAL FACILITY FOR SEQUENTIAL DECODING

I. SYSTEX SESIG?? L A i x ? C)€?.ECrnTS

A. Introduction

In 1948, C . E. Shannon published the fundamental paper‘ which first proved the existence of
methods for making a s small a s desired the probability of e r r o r in the reception of signals dis-

torted by noise.
transmission is less than a particular value (known as channel capacity) which is determined

by the statistical characteristic of t h e noise.
the performance predicted by the coding theorem have been largely unsuccessful, since all the
obvious implementations require either an extremely large amount of receiving equipment or
an exceedingly long time to process the received signals.

This reeult, called the coding theorem, holds t r u e only so long a s the ra te of

Unfortunately, attempts to realize systems meeting

4 To date, sequential d e ~ o d i n g ” ~ is one of only two processes (the other is that of Forney)

which have shown promise of attaining the results predicted by the coding theorem while still
using only a reasonable amount of terminal equipment and processing time.

Because of mathematical difficulties encountered in trying to analyze the properties of

sequential decoding, in some cases it seems more profitable to study the process experimentally.
This can be done either by constructing equipment to perform sequential decoding, by simulating
such equipment on a digital computer, or by a combination of both of these.

The objective of designing and implementing an experimental facility for the study of sequen-
tial decoding has been a challenging problem in system design, which at many stages has required
detailed comparison of several alternative ways to implement the system. A design problem of
t h i s nature is never a “pure” one; it always involves constraints imposed by many factors such
a s time, money, availability of equipment and, above all, the characteristics of the process to
be studied and the problems to be investigated with the system.

This report not only describes the system which w a s finally implemented, but indicates the
alternatives that w e r e available and the reasons behind the choices that were made.
discussing the details of the system, it is necessary to look closely at the process of sequential
decoding.
codes and modern communications theory, which will be used freely.
ence, w e recommend Wozencraft and Jacobs.

Before

W e assume that the reader is familiar with the basic concepts of error-correcting
For a background refer-

5

B. Description of Sequential Decoding

I. Coding and Decoding

Sequential decoding re fers to a class of error-correcting coding/decoding methods which

may be used to communicate data over a communications channel with extreme reliability,

i

k N BRANCHES -I

0

2N NODES I Fig. 1 . Tree structure of information bits.

-1
U-BIT SHIFT REGISTER

m M O D U L O - 2

Zm CHANNEL WAVEFORMS

Fig. 2. Convolutional encoder.

2

.
. despite :he presence of a random disturbance UII the channel. To he specific, iet xs consider

the problem of communicating a string of statistically independent equiprobable binary digits

generated by some hypothetical data source. The channel is assumed to be memoryless, and
communication is carried on by sending a sequence of waveforms over the channel. In particular,
consider a strlng 01 A bits f rom the source. These N bits can be any of 2-' different combina-
tions (called messages), and the sequences can be represented in the form of a tree (Fig. I),
where the t r e e is of depth N and has 2N terminal branches, one for each message. To send a
message, the transmitter might use the channel N times, each time sending one of the binary
digits along the path through the tree corresponding t o the desired message by sending one of
two waveforms over the channel. However, because of noise in the channel, the receiver will

occasionally make a mistake on one o r more digits. When such a mistake is made, the output
of the receiver is a string of binary digits which is exactly like some message other than that
which was sent -the receiver will be unable to detect the fact that an e r r o r has been made.

mi

To combat the noise on the channel, a coding process is employed. For example, the trans-
mitter may f i r s t be changed s o that it is able t o send M = Zm (m > 1) different waveforms in-
stead of just 2. The coding may consist of assigning a signal chosen from this set of M (call
it {s)) to each of the branches in the tree.
mitter then sends the sequence of waveforms assigned to the path through the tree corresponding
to the desired message.
that of a convolutional o r shift-register encoder.
the las t Y binary digits from the source.
tree is needed, the information bit for that branch is shifted into this register (which already
contains the last v digits describing the path through t h e t ree to this node). Then m parity
nets form the sum modulo 2 of the bits of the shift register to which the adder is connected.
(This matrix of connections therefore specifies the code.) The m binary digits generated by the
parity nets is an m-bit binary number which selects one channel waveform from the set of
Zm = M signals.
have a "copy1' of the tree and the assignments made t o each branch), hopefully the received
sequence will not be identical to any of the other paths through the t ree , but will appear to be
"closest" in some sense to the correct path.

In order to send a particular message, the trans-

A particularly simple implementation of this assignment procedure is
In this device (Fig. 2) , the shift register holds

Each time the assignment for the next branch in the

With this encoding method, if an e r r o r is made at the receiver (which must

Now we must define some function for miasuring the "closenessn of the received signals
and the allowed message sequences.

*, r2, . . . , rN), the N information digits of message i by mi = (mil, mi2,. . . , m. 1, and the r = (r
corresponding sequence of transmitted waveforms by s. = (siI, sir . . , , s.). Suppose we choose
the path through the tree which maximizes Pr(r I mi), hence Pr(r I si). Ideally, then, what the
receiver should do is compute all ZN of the numbers Pr(r I si) and pick the largest. But ZN is

a very large number if N 3 50, say, and such a huge amount of computation is clearly impractical.
We must find some other method. As a preliminary, when we assume that the N successive
uses of the channel are statistically independent, we may write

Let u s denote the sequence of N received signals by - -
IN +

1N + - 1 - - + - -
-

and, instead of maximizing this over {gi), maximize

3

TIGHTEN

THRESHOLD t
I Kt?

TERMINATE ON A I NODE WHICH IS F = O 7

L E S S THAN To
ABOVE THRESHOLD 7

YES

FORWARD
START

BEST BRANCH,OR THRESHOLD
N E X T BEST I F VIOLATED 7

T T
SET THRESHOLD
F = 1 VIOLATED ? I I YES YES

I I I
THRESHOLD

BY To

I I

Fig. 3. Word flow chart of Fano algorithm.

4

- 3 -t

Lx(i) = l o g P r (r I si) I

N
= 1 Ab

n= 1

over {gi]. In this form, we see that the total l 'closeness of f i t " between the received signal and
each path through the t r e e is the sum of the measures of the closeness of fi t (Ain) for each branch
in the t r e e along the path corresponding to <.
best path through the tree, Le., the best <. The receiver will move forward through the tree,
one branch at a time, keeping a running total of the increments (Ain) along the path leading from
the origin t o the current position in the tree. If the algorithm chooses the correct path, this

k
number, $(i) = E

n= 1
incorrect path, however, it should grow negative rapidly. By observing the behavior of Lk, an
algorithm can make a decision whether to continue moving forward through the t ree , or whether
to back up and t r y some other path. Just what rules a re used to determine when to back up de-
pend on the details of the particular algorithm.

i t is iiiis f u r ~ u which siiggesis the possibziiy of i i s i ~ g ;r ii-ee s e a & a l g ~ r f t h ~ ~ t o fki: the

A m should become more negative only slowly as k increases. Along an

Jn the example discussed above, the t ree was binary (it had two branches stemming from

each node) because each branch represented one information bit.
node can be constructed by assigning uo information bits to each branch.
may be such that a sequence of p channel symbols is assigned to each branch of the tree instead
of just one. In addition, the restriction to a memoryless channel can be eliminated by changing

the t r e e structure through which the decoder searches.
t ree was the same a s the t r e e generated at the transmitter; but, for a time-variant channel,

the t r e e structure at the receiver might be changed so that at each node there would be a branch

for every combination of information bits and channel state, instead of just for every combination
of information bits.

sequential decoding is applicable, and al l have the common characteristic of being t r e e search
algorithms.

Trees with Z V o branches per

Also, the assignment

In the example discussed above, this

Thus, there are many quite different communication problems to which

2. &le of an Algorithm

To clarify la ter discussions and to provide an example which will be used throughout this

report, we will describe in detail the particular sequential decoding algorithm (shown as a flow
chart in Fig. 3) which is a variation by Jacobs and Wozencraft
Fano.

5 of an algorithm described by
3

This algorithm uses a decision criterion which may be represented a s a horizontal line in
a plot of total l lmetricn vs depth in the tree.

of the "threshold increment" To. Instead of the Ain of Eq. (Z), the "metricllt used for each
hypothesis (on a t ree with one channel use per branch) is defined a s

This Wreshold" may take on only integer multiples

f This is not a true metric in the strict mathematical sense.

5

where n is the node depth, rn is the received data about the branch at this depth, and s .

signal associated with the branch in question.

mission ra te in information bits per branch, and serves as a "bias" that causes the total metric

along a typical incorrect path to decrease on the average, and the total metric along the correct
path to increase. Thus, a plot of metric vs node depth along the correct path should be a line
which has an average positive slope, despite occasional dips which a r e caused by the noise in
the channel.

is the in
R (which equals v) is the information trans-

0

The algorithm searches the t r ee in the following manner. It evaluates Ah for all i (all
branches) at the current node (at depth n) and orders them numerically.
highest value is that which is - a posteriori most likely.) The algorithm then adds this "best1' Ain
t o the total metric L, a,nd checks to see if this new value of L is at least equal to the current

value of the threshold T. If so, the algorithm accepts this branch and advances along it to the

next node. The algorithm then increases the threshold by as many increments of To as it can
and still keep L > T.
which causes the total metric t o f a l l below the current value of the threshold.
the algorithm begins to search the t r ee for a better path.

(The one with the

This process continues until some I1best1l branch has a negative value

When this occurs,

Actually, the threshold may be violated for two reasons: either the decoder was on the right
path all the time but a bad period of noise on the channel caused the metric along the right path

to f a l l , o r the decoder made a wrong turn at some previous node but the e r r o r was not detected
until now because noise on the channel made the bad path look good.

The decoder responds to this threshold violation by searching all paths leading from all

previously searched nodes which l ie above the threshold to see if any of these paths remain above
the threshold.

and exploring all other paths leading from this node until each falls below the threshold.

that the decoder does not actually look at all of them - i f the jth most likely branch at a node
falls below the threshold, so must the j t Ith, etc., so there is no point in looking at any of

these.
threshold.
they all eventually fall below the threshold.

and begins to search all these paths again, just as if it had never seen any of them before.
difference is that this time the decoder will not allow the threshold to be raised again until it
a r r ives at a new node, one it has never reached before.
leading from the current node until they fell below T; thus, any new node must be one which
l ies on an extension of these paths at a point below T and, of course, if it is to be successful,
above TI = T - T

old to be raised again, when it advances successfully beyond this node.
threshold is maintained by means of a flag F in the algorithm.

the threshold f rom being raised, whenever a path which has been tried fails.
t o 0, allowing the threshold to be increased a s needed, when the decoder finds one of the new
nodes, i.e., the nodes lying l e s s than To above the current threshold.

It does this by backing up one branch at a t ime (without changing the threshold)

Note

Eventually, the coder backs up (along the original path) to a point which l i e s below the

At this point, it has searched all paths leading from this node and has found that

The decoder then lowers the threshold to TI = T - T
0

The

However, it has searched all the paths

Only after the decoder finds one of these new nodes does it allow the thresh-
0'

This control over the

It is set to 1, thereby inhibiting

The flag is cleared

6

. Should a l l paths (ever? the new ones) fall be low the new titreshuld, the decoder wi l l again

work i t s way back to a point on the original path which is below the new threshold, reduce the
threshold by To, and t ry again.
old until either t h e metric along the correct path stays above this threshold, o r the point on the

current path where a wrong choice was made is brought above the threshold, allowing the correct
path to be searched.

The coding method allows

In this manner, the decoder will successively reduce the thresh-

Of course, this decoding process need not stop after N branches.
a path through the t r e e to be of indefinite length; hence, the decoding is also a continuous pro-
cedure. We must now decide when the information bits corresponding to the path taken through
the t ree wi l l be given out by the decoder.
requiring a backup of more than 2v or 3v branches is very small, one possibility is to consider
a decision at a node final after the decoder advances 2v or 3v branches beyond this point.

information bits for this branch are then said t o be lldecodedll and a r e put out by the decoder.

Since analysis indicates that the probability of searches

The

3. Why Sequential Decoding Is of Interest

The reason that sequential decoding is of practical interest is the fact that the average num-

ber of branches looked at in order to decode one branch (called the average number of computa-

tions) is a finite quantity which is independent of v, so long a s the ra te of transmission (in infor-
mation bits/channel symbol) is less than some number R
channel and the modulation/demodulation system used. The number Rcomp is, of course, l e s s

than channel capacity, but for many channels it is a sizable fraction of capacity. In contrast,
the number of computations to decode a branch in a tree using a coder with shift register of

length v is exponential in v when all paths in the tree must be searched to depth v/vo.
reduction in the amount of work done to decode N branches is paid for by the fact that the actual
number of computations is a random variable.

vestigation of the behavior of this random variable, since a receiver must have a finite buffer
memory of some sor t in which t o remember the received data until the decoder is ready for it.
If the decoding algorithm should take too long in searching a section of the tree, the buffer might

f i l l up and there would be no place to store incoming data, resulting in complete breakdown of
communications.

which is characteristic of the comp

This

Practical considerations require a closer in-

The error-correction capabilities of the sequential decoder are also of interest. It can be
shown that the probability that the decoder w i u make a mistake on an information bit, and still
succeed in getting back on the right path (by getting Y correct information bits into the shift

register) without correcting the mistake, decreases exponentially with Y, the same exponential

behavior with Y long known for block decoding.

4. Need for Experimental Study of Sequential Decoding

The communications analyst interested in sequential decoding is faced with computing

quantities such a s the distribution of the random variable of number of computations, the prob-

ability of buffer overflow, and the probability that the decoder will advance N nodes beyond a
point in the t r e e where it made a wrong turn and still not detect the e r ror .
quantities to analyze; but a good deal of progress h a s been made, particularly for discrete,

memoryless channels? Some extensions to time-varying channels have also been made! Never-
theless, many cases of interest have not been analyzed, and for each particular case there are

These a r e difficult

7

numerical constants in the algorithm which must be optimized.
obtained by analysis a r e in the form of bounds on the quantity of interest, bounds which a r e cor-
rect in their exponential behavior but not tight to within constants. Much greater accuracy than
is provided by analysis is required for the actual design of equipment for sequential decoding.

Fo r solution of such problems, computer simulation of the decoder is very useful.

Further, most of the results

Another important a rea for investigation is the design of new sequential decoding algorithms.

Here again, experimental investigation would be very useful.

C. System Design Considerations

1. Preliminary System Specifications

F rom the previous description of sequential decoding, it should be clear that any such de-

coder can be broken into four parts. The first part we shall call the signal processor; it takes
as its input the set of voltages produced by the receiver each time the channel is used, and con-
ver t s these voltages to a digital representation which is stored away in a buffer memory until the

decoder is ready f o r the data. The second part of the decoder is the convolutional coder, which
is identical to the one in the transmitter and is used to generate the signal assignments made to
each branch of the t ree . The third part of the decoder is the metric evaluator, which computes
the metric increments associated with each branch at the node in the t r ee where the algorithm
is in its search.

branches at this node (supplied by the convolutional coder) and the data about the received signal

for this branch (supplied by the signal processor).
evaluator, the fourth part of the decoder executes the particular sequential decoding algorithm
desired and decides on which branch to advance o r whether t o back up in the t ree .

The inputs to the metric evaluator a r e the signal assignments made to the

With the information provided by the metric

The capabilities required of each of these four elements of the decoder are determined by

the types of experiments which a r e likely to be of interest.
in advance all the problems that will be studied using this system, a crucial part of the system
design is the thoughtful anticipation of many modes of investigation and the insurance that each

element of the decoder is flexible enough to handle them.
determined, the details of implementing each of them can be studied.

Although it is impossible to specify

Once the capabilities of each part are

First of all, what a re the general types of experiments to be performed? Certainly, evalua-
tion of operating characteristics and optimization of parameters in the algorithm will be done
for particular algorithms and channels.

invention of new decoding techniques (for example, finding some way to reduce the variability
of the number of branches looked at in order t o reduce the probability of buffer overflow). A
further problem of this type would be to find ways to resynchronize the decoder (get it back on

the right path) once buffer overflow has occurred.

will work on a broader class of channels, particularly time-variant channels, will also be im-

portant.
structure (and therefore the algorithm) to include a hypothesis on the state of the channel as
well as on the information bits.

Another more difficult class of problems involves the

Extending present algorithms so that they

As suggested previously, this would probably be done by changing the decoding t r ee

The experimental facility will also be useful in studying modulation techniques for coding
on channels of various types.
width channels with a high signal-to-noise (S/N) ratio need to be studied.

be wide bandwidth channels with low S/N ratios.

In particular, both time-variant and time-invariant narrow band-
Also of interest will

8

Pithough not exhaimtive, the scope of the experim-entation anticipztei above is s ~ f i c i e n t l y

great that a facility flexible enough to handle these problems may be expected to be flexible

enough to cope with a large variety of other problems as well.

7 n - - - 7 : ... : n--:- n..-:-:---
L. L-l-clllliuhil~y ucaLg:ll U C L L ~ L U 1 1 3

Before it is possible to go any further in the system design, it is necessary to make some
preliminary decisions about the form of the system.

cision process may seem to be linear (with one decision leading to another), this is not so.
There is a tremendous amount of interaction between decisions.

made in this section depends on all its consequences, which may not be apparent until much
later.
tu re itself, with a few early decisions each leading to many later, more detailed decisions, this
would neglect the interactions of these smaller decisions with others seemingly f a r removed.
The best design procedure seems to be partly trial and error :

out their consequences until inconsistencies or difficulties appear, and then, in the light of new
knowledge, revising the original decisions.

While for clarity of presentation the de-

The ultimate value of a decision

Although one might be tempted to describe the decision process as having a tree struc-

making decisions and carrying

A very basic decision that must be made e a r l y in the system design is how much of the total

Since each channel communications system the experimental facility should attempt to provide.

and each modulation technique is unique, it would be difficult to design equipment to handle all
cases of interest. Furthermore, we a re unable to model mathematically (hence, to simulate)
most interesting channels, and there is already a good deal of experimental work in modulation/
demodulation techniques being performed at M.I.T.

perimental facility should require, a s its main form of input, the outputs of demodulators in
rea l communications systems.

processor portion of the sequential decoder, this decision means that the experimental facility

need provide only that part of the communications system which is the actual sequential decoder.

For these reasons, we decided that the ex-

Since these outputs a r e precisely the inputs t o the signal-

Given this decision, a way must be found t o make the output of the demodulation equipment
available a s the system input. Since it is unlikely that any way can be found either to bring the

demodulator to the sequential decoding system or vice versa, it seems that some kind of portable
data-gathering and recording equipment is a necessary part of the experimental system.

data-collection system must record all the significant outputs of the demodulator for any of
many different channels, probably on magnetic tape.
the experimental facility.

tions affecting it a r e detailed in Sec. 11.

This

This tape must then be played back into
The design of this data-acquisition system and the system considera-

The choice of ways to realize the system now comes down to either building special-purpose

equipment or simulating it on a general-purpose digital computer, or some combination of the

two. The only decision obvious at the start is that, if the experimental facility is to study dif-
ferent algorithms, it is unlikely that special equipment could be built for executing the algorithm
that would permit sufficient flexibility.
must be the heart of the system and that the algorithm will be programmed into the computer.

software or hardware now revolve around whether hardware implementation can increase the
operating speed of the system sufficiently to justify the (obviously) higher initial cost.
likely to be the case only if one or more of the sections of the system required an amount of

This means that a general-purpose digital computer

Arguments a s to whether the coder, distance evaluator and signal processor should be

This is

9

computation many times greater than that required to execute the programmed algorithm.
should be noted that the computer wil l obviously also be used to collect statist ics on the decoder

and output these results, resulting in a further amount of computation t ime required of the

computer, thus biasing the decision even more in favor of the software system.) It should also
be remembered that interfacing special-purpose equipment with a la rge computer system pre-
sents a host of problems, both technical and administrative.

(It ,

Preliminary speed calculations, a s outlined above, were made early in the system design,
but to go into the details here would distract f rom the main l ines of thought.

that the problems just mentioned, particularly the large initial cost, made it c lear that the

construction of special-purpose equipment would be unprofitable.

Suffice it to say

There are constraints imposed on the experimental facility other than just i ts capability of

performing experiments of interest. How the system is implemented determines its usefulness
quite as much a s i ts capabilities do. In the early stages of system design, it is useful to study
previous related work and benefit from experience already gained.
requirements for making our system useful were pointed out by previous experience with com-
puter simulation of sequential decoding.

Fortunately, some of the

A great dea l of simulation was performed at Lincoln Laboratory, pr ior to the design and

construction of both SECO and
and Jordan?' This simulation included both the channel and the decoder, and was intended to
study one particular algorithm. F rom the experience gained at Lincoln, two conclusions can

be drawn about an entirely programmed system for studying sequential decoding.
tion is a useful tool which is capable of providing quite accurate answers to specific problems,
such a s optimization of parameters in an algorithm and measurement of the statistical behavior
of the decoding process.

gramming effort.
written machine-coded program.

would be an entirely different matter at M.I.T., where the system is to be used by communications

students - not computer specialists.
for the programming probably is not an expert programmer, nor does he have the t ime to be-
come one.

be easy to learn and use.
is often enough t o discourage its use. Furthermore, it is difficult to make one person's program
useful to another person doing work in the same a rea but on a somewhat different problem.

While there may be many sections of their programming which do the same thing, format differ-

ences and lack of communication between the programmers make the likelihood of their using
the same programs small.

7 One report on this simulation work is that of Blustein

F i rs t , simula-

Second, simulation programs require a great deal of expert pro-
Each new problem to be investigated usually means revisions in a tightly

While not too great a problem at Lincoln, such revisions

The graduate student who is most likely to be responsible

This problem suggests the need for some special programming language which would

The large investment of time required to get a simulation effort going

Clearly, the difficulty in the programming is not so much in describing the algorithm for
searching the t r ee as in the details of the programming.

o r real data f rom some channel must be made available to the computer.
to simulate a convolutional coder (not easily done in Fortran, for instance).
be put out concerning what the algorithm has done in searching the tree.

quire programming effort and much of it is 1/0 programming, which is particularly difficult

for an inexperienced programmer.

Either the channel must be simulated,
The decoder will need

Information must
All these things r e -

10

c

The aim of 0-zr experimentzl facility, based entirely G~I , a progg.raiiimed system, is to provide
a system which will do many of these things automatically. The user should have to do little
more than describe his algorithm in some special language, which will also contain special
statements for control of a monitor system consisting of control, 1/0 program and other useful

subprograms which will simulate the functions of the coder and metric evaluator.
attention must be paid to the simplicity of the programming language, in order to minimize the

learning effort. At the same time, the compiler for this language must produce efficient code;
this is necessitated by the need to process large volumes of data to obtain statistically sig-

nificarit data about events of low probability. Even so, collection of statistically significant
data on events of extremely low probability would still require an excessive amount of machine

time. would
require that more than 10 l2 branches be processed; even at 100 psec per branch, this would
take more than three yea r s of machine time!

Particular

For example, to collect data on an event which occurs with probability of

Another obvious area of importance concerns the form of output available f rom the com-

puter.
seems inadequate for describing the details of the search process.
in tabular form, but such a form does not aid much in visualization of the decoding process.
The facility should therefore incorporate some form of graphical output which can be more
easily digested than reams of paper.

Printed output is sufficient for describing the statistics of the decoding process, but

Clearly, this could be done

Choice of computers for use in the system involves several factors, among which availability
is of prime importance.

Project MAC at M.I.T., but a major problem in the use of this machine was the fact that it is

being phased out and a new GE-635 is being introduced. Thus, any part of the experimental
facility which would involve machine language programming would be obsolete when the new

machine goes into general use in early 1966. This would have given t ime to implement the
system, but little time to run problems on it.

Corporation PDP-6 (Ref. 11) installed in October 1964.
long enough to perform all the experiments desired.

machine - it has a 36-bit word with 16,000 words of 2-psec memory, plus 16 regis ters of 0.4-psec

flip-flop memory which serve as accumulators and/or index registers.
connect nonstandard 1/0 devices to this machine. Also available is an advanced display system

containing a character generator and line segment generator which would be excellent for graph-
ical presentation of data in rea l time.

An IBM-7094, operated in a time-sharing system, was available at

Also available at Project MAC was a somewhat smaller machine, a Digital Equipment

The lifetime of this machine should be
The PDP-6 is by no means a small

It is also quite easy to

This brings up another desirable characteristic of the PDP-6, which was chosen as the
computer to be used in the system.
f rom the MAC time-sharing system.

new a rea of operator interaction with the program a s it runs is made possible, a feature which
was never available in the previous computer simulations on a batch-processing IBM-7094.
The uses of this capability w i l l become more obvious when the details of the system are dis-

cussed in Sec. III.

It is used as a programmer-operated machine, separate

Because of this and the excellent display facility, a whole

11. DATA-COLLECTION SYSTEM

Given the decision that input to the system should come from the output of demodulation

equipment, a way must be found to make these outputs available to the system.

A. Form of Input

Since data fo r the computer simulation a r e to be taken from experimental communications

systems, we must decide upon a suitable format fo r such data.
system which has M different orthogonal signal waveforms it can send over the channel.

many cases of interest, it is shown in communications theory that the optimum receiver involves

a bank of matched filters, with one matched filter fo r each of the allowable channel waveforms.
At the end of each use of the channel, matched filter number "i" has at its output a voltage which
is monotonically related to Pr(r I s.) , the probability of the received signal r given that waveform

number tlill was sent. This set of M voltages then represents the total information attainable
at the receiver about each use of the channel. If the waveforms are not orthogonal, less than
M matched fi l ters will be needed, but the receiver would combine their outputs to produce M
voltages related to Pr(r1 si). For more complex situations, such as adaptive receivers which

estimate the characteristics of a time-variant channel, the objective of the optimum receiver
is still to produce a set of M voltages related to Pr(r1 s .) .

Consider the communications

For

1
Of course, not all modulation/demodulation methods of interest are of this type. Sending

one of M orthogonal waveforms is useful on a wide bandwidth channel, but on a narrow band-
width channel where the S/N ratio is high, something like amplitude (or phase) modulation of

one basic waveform might be used.

voltage which is an estimate of the amplitude (or phase) which w a s used at the transmitter. The
signal processor should be capable of processing th i s voltage by storing it away as a digital
number. Ultimately, however, the receiver should again relate the voltage produced by the

demodulator to Pr(r1 si).
information about the signal instead of M voltages.

The output of the demodulator for this case might be a single

It is just that, in this case, one output voltage suffices to ca r ry the

In any event, restricting the system input t o be a set of M voltages entails little loss of
generality, if M can be chosen sufficiently large.

B. Recording Equipment

We therefore seek to make available to the computer simulation these M voltages for each

use of the channel.
can seldom be brought to the computer and the data ra te of the receiver is seldom that required

by the computer.

Clearly, some kind of recording equipment must be used, since the receiver

Of course, any recording equipment must be portable.
Since real sequential decoders would most likely have some analog circuits which would be

driven by the set of M voltages from the receiver, and since analog circuits a r e capable of at
least 1-percent accuracy, any recording system should have an equal accuracy.

experimental results might be as much a function of the tape recorder as of the communications

channel.

Otherwise,

Experiments which were made on multichannel F M recorders indicate that this accuracy is
barely attainable and only after elaborate alignment procedures.
digital tape recording techniques offer the best means of preserving the data.

It was therefore decided that

It was also decided very early that there was no point in trying to record data on *-in. tape

in IBM format, since it would be impossible to adjust t h e timing of the communications system
so that data would be written on tape at the exact density required by IBM tape machines.
the recorder chosen need not write IBM compatible tapes.

then standard computer tape drives will not be able to read it.
must also be used to play the tape back into the computer.

Thus,
If the tape produced is nonstandard,

Therefore, the portable recorder

12

- The list of portable digi t2 tape recorders is quite linliisci. After ruik~lg out the veq- high
priced recorders intended for airborne o r other mobile use, we selected a Precision Instrument
Company model PS-216-D recorder. This machine provides up to 16 t racks of binary informa-
tion on a *-in. tape (1e-h. reel). The recorder wil l operate at tape speeds of 60/2" in./sec
(n = 0 through 5), which provides for a wide range of speed compression between recording and

playback. It is an
important system consideration that this recorder is not capable of being started or stopped

quickly - the time for these operations is I to 3 sec.

the receiver into a form acceptable for the recorder.

produced simultaneously, we must have M sample-and-hold (S-H) devices which w i l l simul-

taneously sample these outputs. An M channel multiplexer must then transfer each of these
voltages to a n analog-to-digital (A-D) converter. Each time a conversion is finished, the binary

output of the A-D converter is written out on tape as one word, and the multiplexer advances to
the next S-H unit. When all M signal values have been written on tape, a longitudinal parity
word is written on tape and then the equipment is ready to record the next use of the channel.
If M = 1,' writing this longitudinal parity word would result in a low data density on the tape,

since every other word would be a parity word.
be omitted if desired.

At 60 in./sec, one bit of data may be recorded on each track every 50 Fsec.

Analog-to-digital conversion equipment is required to change the voltages at the outputs of

Since all M receiver output voltages are

To improve this situation, the parity word may

It would be desirable to have a large number of S-H units so that large values of M may be

used. Unfortunately, such devices are very expensive, so a compromise of ten was chosen.
Part of the rationale for this decision was that experimental modulation/demodulation systems

would not be built with more than ten matched filters, due to 'the amoilnt of equipment required.

Moreover, for a narrow bandwidth channel of particular interest (the telephone line) when fre-
quency orthogonal pulses are used, most of the inner-symbol interference resul ts from fre-

quencies located *5 tones around any frequency of interest, s o ten output voltages would be
sufficient.
enough.

will make the data-acquisition system useful for other purposes, such a s recording speech.

The A-D converter has an accuracy of 10 bits (0.1 percent), which is more than
The additional accuracy of the A-D converter was obtained at very little extra cost and

The logical design of the digital equipment used for recording was completed as pa r t of this
report. The detailed engineering and construction was done by Adage, Inc. A more complete
description of the equipment wi l l be found in Appendix B.

C. Restrictions on Channels

The decision to provide only ten S-H units does place some restrictions on the system
capabilities.

restricted to ,<io; this is not necessarily so. When the M channel waveforms are not orthog-
onal, fewer than M voltages can describe the receiver output; in some cases, ten may be

enough. Also, when the channel is symmetrical, Le., all channel symbols a r e disturbed equally
by the noise, sending the all-zero information-bit sequence is equally as good a s sending any
other message when performance criteria a re to be measured. This fact sometimes leads to
the ability to record larger alphabets directly. F o r example, in the case of M = 16 orthogonal
signals in white Gaussian noise, i f the outputs for channel symbols 0 through 7 a r e recorded

In particular, it would seem at f i r s t glance that the channel alphabet' would be

13

when channel waveform 0 is sent, and then the same outputs are recorded again when no wave-
form is sent, this second set of eight outputs will have the same statistics a s the outputs for

symbols 8 through 15.

.
Thus an alphabet of 16 may be simulated.

Use of nonsymmetrical channels presents another problem a s well a s restricted alphabet

size.
convolutional coder may be required to generate the sequence of channel symbols corresponding
to the particular sequence of information bits used.
is not needed, since the zero information bit sequence always codes into channel symbol 0 .

Since sending the all-zero information bit sequence may be an insufficient test, a rea l

For the symmetrical channel, the coder

D. Hardware for Playback

Having recorded data on the digital tape, means must be provided to connect the tape r e -
This connection requires that a special 1/0 buffer unit be corder to the PDP-6 for playback.

built, which consists essentially of a flip-flop register to hold each word a s it comes off the
recorder, and logic so that the computer may read in the contents of this register.
check on each word is also performed.
of this device - the recorder must be started and stopped manually.
the input buffer is found in Appendix B.

A parity
The recorder is not under program control by means

A detailed description of

E. Ordered Lis ts

Although a rea l sequential decoder would have all the M voltage values available, it would

probably not u s e them all directly.
evaluate the metric increment for a branch would be too complex to be useful; some simpler

function of fewer than M variables could be used without much degradation of operating char-
acteristics. Indeed, one anticipated use of the system is the evaluation of performance a s a
function of various schemes for reducing the number of bits required to store in digital form
the data about the received signal.

Perhaps the optimum function of these M variables to

Since the decoder has to reference the input data about a particular use of the channel more
than once if there is any searching required in this part of the tree, the input data must be stored
away - probably in digital form in a core memory. But, if each of the M voltages is converted
to 10-bit binary numbers, this requires 10M bits of memory storage, which is a large number

when M is large. Therefore, it is natural to seek some way of reducing the number of bits of

storage required for data about each use of the channel.
member only which one of the M voltages w a s the largest, Le., which one of the M signals w a s
most probable. Saving only this much information about each use of the channel clearly will
result in a reduction of channel capacity and Rcomp, hence more and longer searches by the
algorithm. (Channel capacity and RcOmp a r e always measured taking into account the modulation/

demodulation and decision process used.)

One rather drastic solution is to re-

There are many alternatives within the two extremes of saving everything (soft decision) and
saving only the information as to which signal was most probable (hard decision). One could,
for instance, form a list of which P of the M signal voltages were the largest, along with the

values of these voltages, each to k bits accuracy.
storage for each use of the channel.

that obtained by saving everything, but perhaps not by too much.
Wozencraft" indicates just how much is lost when orthogonal signals a r e used in white Gaussian

This would require P [k t log2M] bits of
Saving such an ordered list would reduce RcOmp below

A paper by Kennedy and

14

.-,.:- Ilulae.

than M/Z, and even for M = 64 a list of 16 seems sufficient.
mle conclusion d r a m from &%is pzper is that it may be mp=ofitable io save a l is t longer

F. Programs for Ordered Lists

Because of the generality of the ordered list (I = 1 and P = M a r e the extreme cases), we
This requires shall take this form as the standard input to the sequential decoding algorithm.

that we have some way to convert the raw data from the tape recorder into ordered lists of any
length desired.

Unfortunately, a computer requires a good deal of computation to perform this type of
sorting operation. The time required to form the ordered list can easily exceed the time re-
quired to do the actual decoding. The problem is worse the larger the list length and alphabet

size.
will be cut down.
same time that the algorithm is being run:
constant rate and cannot be stopped in l e s s than 2 sec (even then, data would be lost), we would

have a waiting line problem just as in a rea l sequential decoder. But, we cannot afford the solu-

tion to this problem used by the real decoder, namely, to operate with a ratio of time to advance
one node to time to receive one baud of 1/10 to 1/20.

input rate, the computer would be waiting for input data most of the time; only during long
searches would it be working to capacity.

Thus, if the ordered lists a r e constructed as the algorithm runs, the decoding speed
There is another serious disadvantage to preparing the ordered lists at the

Since data are coming in from the recorder at a

If we did so, by slowing down the data

There is still another reason for not preparing the ordered lists while decoding. If we
desire to stop decoding, to decode very slowly so that the details of the search can be observed

(in a way yet to be determined), or to back up and repeat a section of the search for the benefit
of the operator, there is again no way that the tape recorder can be stopped, or slowed down,
or rewound under control of the computer.

An effective solution to this problem is to prepare the ordered lists beforehand and store
them away in some other medium which can be manipulated more easily by the computer, such
as a drum or disk memory or standard computer magnetic tape, which can be started, stopped

and backed up. Since the l i s t s prepared in this way could be used over and over again by differ-

ent decoding programs, the computation time required to prepare them would be shared by each

of these programs, thereby increasing the effective speed of the system.
The decoding program can run at full speed only if the data transfer ra te f rom the secondary

storage device used to store the lists is high enough so that the program will not have to wait
for data. For example, if the decoding program took about 1 msec to decode a branch (on the

average), and there was one baud per branch with a n ordered list of length I f rom a channel
alphabet of s ize M, the transfer rate required would be I (10 t log2 M) 10 bits/sec. For an
alphabet of 32 and a list of 16, this would be 2.4 X 10 bits/sec, or somewhat more than 100 ksec
for a 36-bit word, This is not an unreasonable transfer ra te to expect with modern 1/0 devices.

Of course, the rate needed would be higher for longer l i s t s and lower for shorter lists.

3
5

On one hand, the computation required to form an ordered list, the amount of storage re-
quired to preserve it, and the transfer ra te required to make use of it, all increase with the

length I; on the other hand, Wozencraft and Kennedy*' indicate that long lists may not be needed
for large alphabets. A limit of 16 was therefore placed on the l is t length which can be prepared.

15

The capability of preparing ordered lists is provided by the set of programs known as the .
input system which consists of four programs: MAIN, PG1, PG2 and PG3. MAIN is an initial-

ization program that asks the operator questions via the teletype, such as what is the alphabet

size and what list length is desired.

they a r e asked.
back.
lists of the desired length (616) and puts the ordered lists into a second buffer.
ber requires 18 bits of storage (one-half word) of which 10 bits is the signal value and 8 bits is
the number of the "matched fi l ter" t o which the voltage corresponds. Thus, alphabets of up t o

M = 2 PG3 takes the ordered lists in the second buffer and writes them

out on DEC-Tape (a small magnetic-tape unit) where they will be available later to the decoding

algorithm.

The operator types in the answers to these questions a s
MAIN then gives the operator instructions to start the tape recorder for play-

P G 1 accepts data from the recorder and puts it in a buffer; PG2 turns it into ordered
Each list mem-

8 = 256 can be handled.

The choice of DEC-Tape fo r a secondary storage device was motivated strictly by avail-
ability; it is currently the only mass storage device available on the PDP-6.
expected that there would be a high-speed data channel between the PDP-6 and the IBM-7094 at
Project MAC, through which an IBM tape drive could be controlled, resulting in a higher data
r a t e and a much la rger amount of data storage than is available using the DEC-Tape; however,
this data channel has not yet been procured by Project MAC.

length is 1, a DEC-Tape can hold 147,600/1 ordered lists.
nodes can be stored - not very much data to provide information about events of probability

Initially, it was -

The DEC-Tape units can store 73,800 words (36 bits each) of data, meaning that if tbe, list
Thus, with a list of four, 36,900

o r The transfer rate from DEC-Tape is a maximum of one word (36 bits) per
400 psec, or 2001 psec per ordered list. Thus, with a list of 4, the absolute maximum decoding

speed is 1250 nodes/sec, a not unrealistic speed.
Tape limited.

For longer lists, decoding speed is DEC-

The programs PG1, PG2 and PG3 a r e intended t o be as modular as possible, in order t o
permit changes to be made easily which would remove some of the present restrictions on inputs.
For instance, if a program should be written t o simulate a channel, it could be substituted for

PG1 quite easily. If output t o some device other than DEC-Tape is desired, only PG3 need be
changed.

Details of the use of the input system will be found in the U s e r ' s Manual, which is included

as Appendix A of this report.

111. OPERATING SYSTEM

Based on the preliminary design decisions of Sec. I-C, and on the information obtained by

study of the data-collection system in Sec. 11, further design decisions can be made and specific

ways of implementing the system requirements may be found.
fo r them a r e described below.

The choices made and the reasons

A. Available Subprograms

1. Coder

Since the sequential decoder must have a copy of the signal assignments made to the tree,
it must contain a convolutional encoder with the same set of parity nets used by the coder. The

general form of the shift register encoder is very well defined, and it is possible to implement

16

the coder by means of a subprogram which is caijzble of s i r idat ing the coder for almost any
situation that could prove useful.

There are three parameters of the coder which must be variable over a wide range (v , vo
and p), but basically the coder must just be capable of forming several check bits, each one
being the sum modulo 2 of selected bits of a shift register.
only two parameters: the length of the shift register v and how many different check bits can

be formed at one time.
shift register, and this must be completely arbitrary.) Once the check bits have been formed,
they may then be grouped together to form binary numbers which specify channel signals. Note
that, although the shift register coder is often formulated so that the output is formed by grouping
check bits with information bits, the same output can be achieved by grouping check bits only,
since the special case of a parity net with only one connection gives an output the same as the
information bit to which it is connected.

Initially, we need be concerned with

(Of course, each is specified by the connections made to the bits of the

The number of check bits grouped together to form one baud determines the size of the
channel alphabet. Large alphabet s izes are useful on dispersive channels (channels with memory)

for several reasons, among them the desirability of making a s small a s possible the probability
that a signal sent during one baud will also be assigned to one of the branches on the next baud.
Since the channel is dispersive, energy from the last baud could produce a voltage at the output
of the matched filter in the next baud, which might lead to an erroneous decision a s to which
branch to take initially, causing unnecessary searches.

will usually be necessary for each channel symbol, it seems unlikely that alphabets of more
than 256 or 512 would be of practical interest.
need be formed.

Remembering that one matched filter

Thus, no more than 8 o r 9 checks bits per baud

If the modulation technique used is amplitude modulation of one waveform (a s might be used
for a narrow bandwidth high S/N ratio channel), these check bits would then specify the particular

amplitude to be used.
would be used, so no more than 7 check bits would be required for this case.

Component accuracy makes it unlikely that more than 128 amplitudes

The number of branches per node in the tree is determined by the number of information
bits assigned to each branch of the t ree , and must therefore be a power of two. On one hand,
a large number of branches at each node means a large amount of calculation will be required
to compute the metric increments for each of them and to select the nth most likely. On the
other hand, it may be desirable t o have many information bits per branch to improve the re-
liability of the decision at each node.

a certain amount of energy for each information bit to be transmitted.
noise ra t io is very small when the baud includes energy for only one information bit, e r r o r s

a r e likely.
information bits is lumped together in one baud before detection, the S/N ratio will improve and

the degradation is reduced.
assume that no more than four information bits per node will be required.

A problem is often formulated in t e r m s of being allowed
If the baud energy-to-

This is particularly t rue when using incoherent d e t e ~ t i o n ? ~ If the energy for several

The practical considerations involved lead us to compromise and

The number of bauds required for each branch in the tree depends on the alphabet s ize and
on the desired degree of redundancy required, that is, the ratio of check bits to information bi ts

per branch.
bit per branch, 6 o r 8 check bits might be required; for alphabets other than two, the computa-
tion required to select the nth most likely branch increases with the number of bauds per branch.

A limiting case might be where the alphabet size was two. With one information

In any event, 10 bauds per branch seem sufficient as a limit t o what the subroutine should be
expected to provide. 5 Wozencraft and Jacobs (Ch. 5) confirm this decision.

The only other parameter on which a limit must be set is the length of the sh i f t register -

It is this length which enters into the expressions for bounds the constraint length of the code.
on the probability of e r r o r (which decreases exponentially with the length).
problems such as buffer overflow probability (which is mainly a function of how close the t rans-
mission rate in information bits per channel symbol is to Rcomp) indicate that there is no point

in having probability of e r r o r much lower than the probability of buffer overflow, unless a feed-
back channel is used; hence, there is no gain in increasing the length of the shift register beyond

a certain point.

information bits.
should be sufficient.

Still, practical

Experimental work at Lincoln Laboratory has used a constraint length of 60

It would seem that a length of 108 bits (which represents three PDP-6 words)

A way must now be found to provide the coder subroutine. The particular way in which the
The brute-force way to com- subroutine is implemented also influences features of the coder.

pute a check bit would be to have 108 bits to specify a parity net (1 implies connection, 0

implies no connection), then count up the number of 1 ' s in the shift register bits to which a
connection is specified and see if the total is odd o r even.

each check bit.
method which enables 36 check bits to be formed in the same time it takes to form one, and the
time to form one check bit is about 1/6 that of the brute-force method. The subroutine not only
computes these 36 check bits for one branch at a node in the tree, but actually computes the check
bits for all branches at a node simultaneously.
siredway into groups of upto ten bauds.

bits per branch a r e allowed.
into which the check bits have been placed in accordance with the u s e r ' s specifications.
information bits along a particular branch a r e used as the index on these tables, and the cor-

responding table entry is the check bits for that branch.

This process could be repeated for
Fortunately, a better implementation is available by using a table look-up

The coder subroutine arranges these bits any de-
For t r ee s up to 16 branches per node, up to 4information

The output f rom the coder is a set of tables, one for each baud,

The

Details on how the arrangement of the check bits may be specified and how the subroutine
is initialized and called a r e found in Appendix A.

2. Ordered List Sorts

Since we formed the ordered lists from the input data, we must now decide how to make use

of them.
increment for each branch at the node, which in turn wil l usually require some kind of sort on

the ordered lists of input data for that node.

Choosing a branch to advance along from a node requires the computation of the metric

Just what mathematical expressions will have to be evaluated to determine the metric in-
crement for a branch?
by study of the metric in the Fano algorithm,

This may vary with the algorithm used, but some insight can be provided

where r is the received information about this baud (the ordered list or any part of it desired),
and s. is a particular hypothesis signal number obtained from the coder.
of receiving r, taken over the ensemble of convolutional codes.

Pr(r) is the probability
J

18

F o r some ciiaruiels Pr(r) = C, a constzit for a l l is, a i d the metric reduces to computing

log [Pr(r I sj)/C] - R. An example of this type channel is M orthogonal signals in white Gaussian
noise, when r is the ordered list of signal numbers only.

the value (M - P)!/M!, since all ordered lists are equally likely over the ensemble of convolu-

tional codes. However, if r is considered to be the ordered list of both signal numbers and
signal values, then Pr(r) is clearly not the same f o r all r. In both these cases, sending the

all-zero information bit sequence is a sufficient test for experimental purposes.

If the l ist is of length 1 , then C has

When there is only one baud per branch and the probability that a particular channel symbol

was sent is a monotonically increasing function of its received signal value, the decision of

what branch to take is quite easy. In this case, the jth most likely branch is the jth hypothesis
on the ordered list.
likelihood of the hypothesis, it is possible to select the branch which has the th largest metric

increase simply by picking the j"' hypothesis on the list. A subroutine called "FIND" has been

provided to do this. It finds the position on the ordered list of the jth hypothesis, and also re-
turns the information bits associated with this hypothesis. Once the position is known, the
signal value can be found and any arbitrary function of l ist position and signal value may be

used for the metric.
Fo r example, if the l is t were of length 1, and the metric increase was only a function of the
position of the hypothesis on the list, a table of P + 1 values would suffice.
on the l is t as an index on this table, the value of the metric increase could be found immediately.

Therefore, if the metric used is a monotonically increasing function of the

*L

Quite often this function can be implemented a s a simple table reference.

Using the position

If the list length is I , and there a re B branches per node (B hypotheses), it is possible

that only k < B hypotheses appear on the ordered list.
of the jth most likely branch for k < j < E will all return the value P t 1 to indicate that the

hypothesis is not on the list.
some arbitrary choice must be made from among them.

in a random (yet repeatable) way the information bits corresponding to one of these B - k
branches.
channel, the algorithm will not accidentally favor this message. It must be repeatable so that

the algorithm will be able to search all branches at a node, and always do it in the same order

if it should return to this node.
j (k < j 6 B) will return the information bits for different branches.

returned by the subroutine a r e unique for all j (1 < j 4 B), but the position returned will be
different for only k + 1 values of j, since B - k values of j return I t 1.

In this case, requests for the position

This means that all these B - k branches are equiprobable, so
The subroutine also does this by picking

The choice must be random so that, when the all-zero message is used to test a

The choice is made in such a way that successive values of
Thus, the information bits

The more general case, in which the metric increase for a branch is not a monotone function
of its position on the list, requires that the metric increase for all hypotheses be computed first ,

then the jth largest selected.

"XPFINDF") is provided which returns the position on the ordered list of the hypothesis (signal
number) specified as the argument of the subroutine.

To aid in this process, a subroutine (a Fortran function called

In the case of more than one baud per branch, the metric increase for each baud of a branch

must be computed and totaled for the branch, and this process must be repeated for each branch.
Only when the sums for all the branches a r e complete may the jth largest be chosen. The second

subroutine, XPFINDF, provided will prove useful here as well.
There a r e several other extensions of these s o r t s that suggest themselves. Fo r instance,

similar routines could be written specifically for channels with multi-amplitude signals, and

for phase-modulated channels. Most of these a re quite specific in their applications; hence, it .
is felt they should be implemented by the user .

3 . Collection of Statistics

One decision made in specifying the system was that it should be able to collect statist ics

on the performance of the decoder, and yet we must not require the user to do much programming

to accomplish this.
collect and ways in which this might be implemented.

A look at the character of sequential decoding suggests likely statist ics to

The behavior of the waiting line (received signals waiting to be processed) is of great im-

portance in the design of a sequential decoder.
long, the buffer memory storing input data will overflow, resulting in complete loss of com-
munications. J. Savage has studied this problem exten~ive1y. l~ and has found that for memory-

l e s s discrete channels the probability that the waiting line exceeds K behaves a s K-CY (a > 1)

for large values of K. The number CY depends primarily on the ratio R/Rcomp, and is relatively

insensitive to machine speed.
limited, s o it would be useful to collect such statist ics for several kinds of channels.

If a search in a section of the t r ee takes too

Experimental verification of these ideas has been somewhat

If we model the sequential decoder a s taking T s e c either to advance or re t reat 1 node, and
it takes T sec for one branch to be received, then each t ime the decoder advances one node, the
waiting line (if nonzero) changes by (T/T) - 1; if the decoder backs up one node, it changes by
(T/T) t 1. We can then sample the waiting line every T sec, and use these samples to make a

histogram on the value of the waiting line. This can be done automatically, with the user re-
quired only to specify T/T. At the end of the run, the histogram is automatically outputted.

Data on the behavior of the algorithm during searches a r e also useful. In particular, it
would be useful t o know the distribution of the number of nodes back the algorithm has to search,

and the distribution of the number of computations made during searches, appropriately defined.
One possible definition is that a search begins when the algorithm fails to advance (provided a

search is not already in progress), and the search terminates when the algorithm first succeeds

in advancing to a depth beyond the point at which the search started.
search depth and one of the number of branches looked at during searches, a r e collected auto-

matically if desired.

Two histograms, one of

B. Output Display

Just .what information about a sequential decoding tree search is most important t o that
user? The answer to this question is not always clear. One thing is certain, however: by the
very nature of the process, a complete description of what the decoder has been doing consists

of the paths it has taken in searching the tree, together with the values of the increments in
measuring function along these paths.
of a printed table of some kind, but such an output form does not aid much in visualization of the
decoding process. One is likely to end up with r eams of data, mostly uninteresting, through

which one has to plod in order to find the few events which a r e really of interest.

such printed output comes after the fact.
found and more data about this section be desired, one would have t o run the problem again and

wait for the printed listing to be ready.

This information can clearly be presented in the form

Furthermore,
Should an interesting section of the tree search be

20

- The mm-machhe Lqteraction possible eiff the PDF-6 display facility affords a vast im-
provement over the situation just described. Information about the t r e e search can be displayed

visually by constructing a picture of the actual t ree through which the algorithm is searching.
The information about which path the algorithm has taken may be combined with the information
about the metric increase for each branch to generate a plot of the t r e e in which the x-dimension

represents depth in the tree, and the y-dimension at a node represents the total of the metric
increases along all the branches leading to this node.
segment whose slope is proportional to the metric increase on that branch.
algorithm advances on a new branch, the branch is entered on the display.

backs up, its position in the t r e e is indicated and a l l the branches it has already searched r e -
main on the display.
Sec. I, namely, how to improve the form of output available from the simulator over that of the

printed page.

Clearly, not all of the many thousands of branches searched can be displayed at once.

Each branch is entered a s a straight-line

Each time the
As the algorithm

The use of such a display is clearly a solution to the problem posed in

As
the algorithm advances, branches a r e added to the display and the current position in the t ree
moves closer to the edge of the display. When the current position gets too close to the edge,

the entire picture of the t ree must slide to the left (preferably slowly so that the observer will

not be disoriented).
keep the current position on the screen at all times. This implies that there must be some way

of regenerating branches which have f i r s t slipped off one edge as the display drifts in one direc-
tion and then must be returned again as the display drifts the other way.
of this display is a challenging problem; the method used here results in an interesting l ist
structure f o r storing and displaying the tree.
The display program provided shows a section of the tree 16 nodes deep. Information about
branches investigated but not currently displayed is stored for a distance about 200 nodes behind

the current position.
ra ther than the number of nodes away f rom the current location - storage is provided for 512

branches.

This drifting process must be able to move in any direction, in order to

The implementation

This structure is described in detaii in Appendix C.

The actual number depends on the total number of branches investigated

Fig. 4. Possible display of tree.

1 1

CURRENT
POSITION
IN TREE

When many branches are displayed, it is desirable to make the path presently being searched

by the decoder stand out f rom all the others. This is accomplished by making it brighter than
any other path.

ambiguities in the display.
path without having this path brighter than the other.

display of this nature by means of a difference in intensity is something that is worthwhile having

for branches other than the current path.
particular node on the display and then increasing the intensity of the unique path leading from

this point back to the origin (or to the edge of the screen).

Such a difference in brightness is also helpful in distinguishing between any

For instance, in Fig. 4 it is impossible to tell which is the current
The ability to resolve ambiguities in the

This can be done by using the light pen to select a

21

Another necessary feature of such a display is the ability to recall branches which have

slipped off the edge of the screen.

longer displayed; since all the t r ee is not displayed at once, it should be possible manually to
cause the tree to slide around on the screen in any direction.
by use of a light pen which, when touched to one tip of a small eight-pointed star displayed on

the screen, causes the display to drift in that direction.

The operator may find it useful to look back at branches no

This can most easily be controlled

There is information about the search, not carried in this plot of the paths that have been

searched, which should also be made available.
the branches displayed with the signal numbers assigned them by the coder.

displaying all these numbers would lead to confusion when there are more than a few branches
displayed, since numbers might overlap, branches be drawn through numbers, etc. Also, the

amount of computation time, display time and data storage required would be excessive. A
compromise has been made by allowing these numbers to be displayed for only the branches
along the current path.
displayed across the top of the screen; here also are displayed the contents of the shift register
as binary digits in groups of v o (the number of information bits per branch), with each group
above the branch along the current path to which it corresponds.

In particular, it would be desirable to label all

Unfortunately,

Instead of being displayed alongside these branches, the numbers are

There is further information which should be made available on the display. In particular,
the critical point in any t r ee search (and therefore the point about which the most information
should be supplied) is the current point where the algorithm is attempting to advance in the t ree .

The information which the algorithm has available is the ordered list for this node and the set
of signal numbers which have been assigned to all the branches at this node. F rom these data
(and possibly from other internal data), the algorithm computes a metric increment for each of

these branches and then selects which of these paths it will follow, or whether to back up. The
use r should have this information available to him.
list in numerical form (both signal value and signal number, expressed in octal) and a table of
the signal numbers assigned to each information bit sequence fo r this branch.

and is willing to insert some extra coding in his algorithm program, all the branches at the node
currently under consideration will be displayed, thereby showing the metric increases associated

with each of them.
the branch on which to advance without actually computing the metric increase for all branches,

such as choosing the branch which is the th hypothesis on the ordered list.
other branches, code to evaluate their metric increases must be included.
also be labeled with the signal number to which they correspond (expressed in octal).

ordered list from a previous node can be displayed instead by selecting the desired node with the
light pen.

It is provided by displaying the ordered

If the user desires,

The extra coding is necessary because it is sometimes possible to choose

To display the
These branches will

The

However, the table of coder assignments for this node is not shown.
A few other useful items are also displayed. The depth in the t r ee (in number of nodes

from the origin) of the current position is displayed as a decimal number, and the node depth
every 10 nodes is marked across the bottom of the screen.
number of equally spaced horizontal lines which may be used as "thresholdsr1 in the decoding
algorithm. Any one of them may be shown brighter than the rest to make it stand out for use

as a display of a running threshold, or, if desired, only a single horizontal line can be drawn.
The purpose of the display is to provide as much information about what the algorithm has

Also available is a display of a

been doing as possible, in a form which is as easy for the use r t o digest as possible. The

22

*particular feztiures available h the display program were determined by studying the properties

of the process to be investigated.
formation about a particular aspect of sequential decoding.

Each feature included fulfilled a recognizable need for in-

There are several u s e s for the display feature a s a whole. First of all, it provides an

By watching the searches made, one can easily deter-
Second, it may be used to observe more

excellent way to debug new algorithms.
mine whether the algorithm is performing properly.

closely the behavior of an algorithm when the search gets into trouble by getting f a r off the right
path.
path, it may be possible to use this information to design new algorithms which will perform

better.
the behavior of the algorithms.
which people have little appreciation.
display, new algorithms may result for channels for which mathematical investigation is dif-

ficult.
mathematical investigations.

If there is a pattern to these searches, a pattern relating to why they leave the correct

Third, but by f a r the best, the display feature may be used to gain a better feeling for

If it is possible to strengthen intuition by observing this
The dynamics of the decoding process a r e something about

Alternatively, the results obtained from the simulation may point the way to further

C. Monitor System

Control over the algorithm as it is executed is maintained by a monitor system. The
monitor has some automatic internal functions and wi l l also accept a variety of commands from

the teletype.
The functions included in the monitor are based partly on requirements of the display feature
and partly on the desire to make the programming effort of the use r as small as possible.
mands given to the monitor via the teletype allow the monitor system to satisfy the need for

man-machine interaction established in Sec. I.

A complete listing and description of these commands is given in Appendix A.

Com-

1. Control of Display

One aspect of the monitor system which is obviously necessary is control of the display of

Clearly, the algorithm cannot proceed to search the t ree at computer speed, the t r e e search.

since the display would change so fast there would be no time for the operator to comprehend
it.
operator to follow it, not very many branches will get searched.
commands which will control the speed a t which the algorithm advances. It must also be able
to turn off the display completely, so that data can be processed rapidly in large volumes. If
the display is turned off, and then turned on again later, the display program will have no in-
formation about the tree structure at the new location; hence, only branches newly searched
will be entered on the display.
one in which the display program continues to remember the tree structure at al l times, but
does not generate a display from this information. When the display is turned back on, the past

history of the searches made can be displayed.
between the other two, and all three a r e available through commands on the teletype.

On the other hand, if the algorithm is forced to step through the t r e e slowly enough for the
Thus, the monitor must have

This suggests that a third mode of operation would be desirable -

This mode of operation is midway in speed

Control of the display speed is maintained by means of an internal clock in the PDP-6,

which indicates the passage of every 1/60 of a second.
statements in his program describing the algorithm which serve a s !'check points." The algorithm
is allowed t o run until it reaches a check point in the program, where it is required to wait until

In addition, the user must insert control

23

a specified amount of time has passed and is then allowed to go on.
is waiting at the check point, the display wil l not change.
may be set t o seven different multiples of 1/60 of a second (ranging from 2 to 1/30 sec) by means

of a command on the teletype; when the display program is turned off completely, there is no
waiting t ime at the check points.
scribed above, the waiting time at the check points is only long enough to add information to the
t r ee structure which is being stored away, but this information is not used to generate the dis-

play.
where the algorithm advances o r re t rea ts a node, SO that each change in the t r ee will be displayed

long enough f o r the operator to see it.

During the time the algorithm.
The waiting time at the check points

When the display program is operating in the third mode de-

It is expected that the user will insert these check points in the algorithm every place

2. Control of Data Input

Another basic feature of the monitor system is its automatic control of data input. This
feature is necessitated by the system requirement that the user should have to do as little 1/0

programming a s possible.
second checks to see how deep the algorithm is in the tree. If the algorithm is on the verge of
running out of input data (ordered lists), the monitor system tells another program to get more
data from the DEC-Tape. The monitor system will force the algorithm to wai t until these data
have been brought into memory. The request for new data is usually made soon enough so that
this wait is not necessary: only when the decoder advances unusually rapidly will the wait be

required.

Again, the monitor makes use of the clock, and every 1/60 of a

Input data are stored in memory in a ring buffer, Le., as a table in which new entries a r e
made at the beginning of the table after it has filled up.
determines the number of nodes which an algorithm may back up before running into an a rea
where new data have been written over the old.
the l ist length is 16, t o 2048 ordered lists when the list length is one o r two.
seem adequate in view of the 108-bit maximum constraint length of the coder.

The length of this ring buffer (in branches)

This length ranges from 256 ordered lists when

These lengths

The purpose of the automatic data input function of the monitor system is to remove from
He need merely the user the necessity of including any programming dealing with input data.

reference this table as if the data a r e there, and they will be.
Occasionally, he may desire to modify the input data which have come off the tape; for in-

stance, t o answer the question: “What would happen if the ordered list at node 5 were---?”

Data for individual nodes may be inserted manually by means of a command on the teletype,
providing another form of man-machine interaction.

3 . Control of Algorithm

Two other basic classes of monitor commands must be made available. First is the simple

running command to start or stop the algorithm.
run the algorithm until it reaches a particular node depth and then stop; or, the monitor will
run the algorithm until a specified number of check points have been passed.

command dealing with restarting the algorithm at a particular node depth.

point in the tree has been found, the user may desire to rerun this critical part of the search
several times to observe it more closely.

data through rapidly without the display being turned on, and then, on the basis of data collected
about the search (such a s the node depths where the search depth exceeded a certain number,

It is also possible to command the monitor to

Second is that
Once an interesting

A good procedure to follow would be first to run the

24

4

or the waitt-g 1ize was ? z g e r thz? a certain mmber), retilrn to examhe some points k~ detail

with the display turned on.
In order to provide the restar t capability, the user is required to specify what quantities in

his algorithm represent the “state” of the decoder, such a s the total metric, the contents of the
shift register, the state of any program flags and the contents of the tables which provide in-
formation required to back up in the tree. If these quantities a r e reset to the proper values,
the algorithm will restart . These data will usually include the contents of several tables (an
amount of data that cannot be stored in core memory for lack of room).

is to write these data out on DEC-Tape every so many nodes (the frequency being specified by

the user).
of the nominal depth at which this storage would occur. When these data are stored away, the

use r may res ta r t the algorithm at any one of the points saved by means of a monitor command
on the teletype.

The procedure chosen

The user can also force res ta r t data for the present node to be stored away regardless

One other feature available through a monitor command is access to DDT, a debugging pro-
Use of DDT provides limited ability to make changes in the algorithm, provided the user gram.

is willing to make the changes in machine code. A more likely use for DDT would be to change
values of parameters in the decoding algorithm, since this is done very easily.

IV. SPECIAL LANGUAGE

Since the use r is required to program the algorithm, and we desire to make this programming

effort a s small as possible, a special programming language has been developed t o express the
algorithm t o be investigated.
facility and the various subroutines discussed in Sec. III.

below.

This language must also be capable of controlling the display
The design of the language is discussed

A. Requirements to Describe Algorithm

The characteristics required of this language are quite stringent, but because of the relative
narrowness of the type of computation required it has been possible to arr ive at a suitable solu-
tion. The f i r s t and foremost requirement of the language must be the ease with which it may be
learned. To aid the learning process, the language must use notation as familiar as possible
to the mathematically oriented person. All the fine generalities of a language such as ALGOL
are not necessary - the algorithms to be investigated will not be that complex. (The fine points
of ALGOL would most likely be lost on the inexperienced programmer anyway.) The objective
is not to allow an expert programmer to describe all possible types of tree search algorithms
as elegantly as possible, but to allow an inexperienced programmer to describe simple algo-

ri thms as easily as possible. A look at the algorithms which have been developed so far shows

that the type of computation required is almost exclusively the evaluation of algebraic expressions
(using subscripted variables) and the comparison of two numbers and branch on the result. These

functions are provided in a very simple format in almost any of the algebraic languages available

today.
difficult part lies in the 1/0 programming and in deciding on data formats, etc.
ready has been performed to a great extent in the programs of the monitor and display systems.

Therefore, it is not necessary to be able to use the language to write a program to draw the
display of the t ree on the scope, and it is not necessary to be able to describe the convolutional

This is as anticipated: the actual description of the algorithm is relatively simple; the
This work al-

25

coder in the language, nor is it necessary to Write a program in this language to control the input

of the ordered l ists .

control those programs already written.

All that is required of the language is that it has statements which can

Since an algebraic language satisfies many of the requirements for a language to describe

the sequential decoding algorithm, it seems sensible to t r y to modify an existing language rather
than to construct a completely new one, which would only result in a great deal of work duplicat-

ing what is already available. Of course, modifying an existing compiler can be very difficult;

it depends upon the method by which the compiler has been implemented.
The PDP-6 is supplied with a version of Fortran IIi5 which was written by P. Samson of

DEC, and is patterned after the work of Irons 16'*7 and Bastian:' This is implemented as a
syntax-directed compiler, 19-21 which takes its name from its use of a syntax table to perform

translation from the input language (Fortran 11) to the machine language.
specifies the syntactical elements of the input language and the ways in which they may be com-

bined into larger syntactical units.
guage may be combined to form complete statements in Fortran 11.

The syntax table

It gives the rules by which the characters of the input lan-

The great advantage of syntax-directed compilers in general, and for o u r purpose in partic-
ular, is the ease with which additions or modifications can be made to the programming language.
Only the syntax table need be changed, not the programs which interpret it. F o r additions to

the language, new rules are added to the syntax table; for modification, rules in the syntax

table must be changed. In either event, the work required to make changes is relatively minor.
With the algebraic capabilities of Fortran I1 to start with, the number of changes and additions
required is reasonably small.
language was chosen, and i t s availability on the PDP-6 was another reason why this machine

was chosen.

This was a major reason why this implementation of the special

A description of the syntax-directed compiler is found in Appendix D.

The following sections describe the special features of the language, features which a r e
determined by the requirements of the other programs already described and by the nature of

sequential decoding.
in the language (a specific description of all the special statements and their use is found in

Appendix A).
Appendix D.

The examples given a r e by no means all the special statements available

An example of how these statements compile into machine code is found in

B. Requirements to Manipulate Coder

One set of special statements deals with manipulation of the convolutional coder. As wil l
initializa- be found true for the other types of statements, these may be divided into two types:

tion statements and executable statements.
gram and are only used once; the latter a r e used in the description of the algorithm and are
executed many times.
tion of the parity nets, and how the check bits will be grouped to form one branch of the t ree .
The executable statements must include a suitable call t o the subroutine which simulates the
coder.
or left and digits removed o r inserted at the ends.
showing how to group the check bits, is

The former a r e placed at the beginning of the pro-

Initialization statements for the convolutional coder must include descrip-

Statements must also allow the shift register t o be manipulated directly - shifted right
An example of the initialization statement,

SEQUENCE 1 (S, S, I, Pi, B, I, P2)

26

.
. whkh says that the ontput of the coder for the next branch in the tree is generated by f i r s t shift-

ing right two bits (S, s,) thereby entering two information bits, then to specify the f i r s t baud by
putting out two bits which a r e the f i r s t information bit followed by a check bit from parity net

Pi(1, Pi), and finally by putting out two bits to specify the second baud, namely, the second in-
formation bit and a check bit from parity net PZ(1, PZ). The symbol B is used to separate the
bauds. The parity net Pi is specified by writing Pi = and then a 36-digit octal number which
gives the connections to the shift register.
in the program, the executable statement GENERATE i should be used.
particular SEQUENCE statement given above; up to ten different SEQUENCE statements could

be used and each of them is given an identifying number.
QUENCE statement would be used when simulating a decoder for a time-variant channel, using
feedback, where the transmission rate R would be changed as the channel changed. A different
SEQUENCE statement would be used for each rate.

Then, whenever the next branch is to be generated
The 1 refers to the

For example, more than one SE-

C. Requirements to Control Display

Control of the display program requires another class of statements. Rather than re-
quiring a user to pass along to the display program the metric increment he computes for a new
branch, only a single initialization statement is required in which the user specifies the name

of the variable he will use to represent the metric increments. (This variable is most likely
a subscripted variable and the subscript is the node depth.) The presence of this initialization
statement causes the values of metric increments to be passed along automatically to the display

program. For example, if the name of the table of metr ic increments is LAMBDA, the state-

ment will be

DISPLAY INCREMENTS LAMBDA .
A similar initialization statement is used t o control the display of the threshold lines. In

this case, both the names given to the threshold and the threshold increments must be given, a s

in

DISPLAY THRESHOLD IT, IT0 .
If the value of the threshold increment (IT0 in this case) is zero, only the line Corresponding to

the threshold will be drawn.
Initialization statements are also used to specify a table whose entries wi l l be used to label

the current path. It will be up to the user to program his algorithm to store in this table the

signal numbers corresponding to each branch of the t r e e along the current path.
ment, when the table name is HYP and there is only one baud per branch, would be

Such a state-

LABEL PATH HYP, i

(the number 1 means there is one baud per branch).
To set up the "check points" where the algorithm must wait a length of time determined by

the monitor system, two executable statements are provided ENTER BRANCH, to be used just

after calculating the metric increment for a new branch; and WAIT, to be used at all other points.

D.

Still another class of statements is used t o control the referencing of input data (ordered

Requirements to Reference Input Data

lists) and subscripted variables. Several forms of an open subroutine for referencing either the

21

signal value or the signal number of a particular member of a particular ordered list a r e avail-

able. Thus, the reference appears to the user a s if he were referencing a simple table, which
he is not, since the ordered lists a r e stored in memory in the packed form which has previously
been described.
user as a table of infinite dimension.
a s one subscript of a subscripted variable.
of core storage, this table would take up all of memory.

initialization statement is of finite length N
0'

any reference is made to the table. Thus, the use r appears t o have a table of infinite dimension,
but he can actually reference only the No entries around the current value of N.
make use of such a table is determined by the nature of the t r ee search algorithms; it will not
be necessary to reference data about nodes too far away in order to make a decision on how to

proceed with the search. Likewise, the probability of having to back up a la rge number of nodes
in the t r ee i s very small; hence, if the actual table length is something like 256, the effect is
the same as if it were infinite.
the metric increments use

Another type of initialization statement is used to set up what appears to the
This is used when it is desired to have the node depth N

Since each value of the subscript requires one word
Actually, the table assigned by this

The value of N is always taken modulo No before

The ability to

For example, to keep this kind of table (named LAMBDA) of

BACKUP DEPTH IS 256 NODES
SAVE LAMBDA (256) .

The first statement sets No and the second statement acts like a Fortran DIMENSION statement,
except that all references to this table wil l result in the subscript being taken modulo 256.

E . Requirements to Collect Statistics

A few more miscellaneous initialization statements have been added which a r e concerned
with the automatic collection of statistics on the decoding process.
waiting line, (2) the search depth and number of computations on searches, and (3) any other
variable desired will be collected automatically simply by inserting the proper initialization
statement.

A histogram of (1) the

The waiting line histogram is computed by using the statement

COMPUTE WAITING LINE 20

where 20 is the ratio of the time for one branch to be received to the time for the decoder to
advance or retreat one node in the simulated decoder.
tations histograms are collected by using the statement

The search depth and number of compu-

COMPUTE SEARCH DEPTH .

V. EXAMPLES, TESTS AND CONCLUSIONS

A. Example Chosen

In order to demonstrate the effectiveness of the system, a problem was chosen and pro-
grammed which would exercise most of the system's capabilities.

The modulation/demodulation process tested is that of M = 8 orthogonal signals in white
Gaussian noise. The t ree structure is binary (one information bit per branch) with one use of

the channel per branch.
be r from the information bit and 2 parity check bits; this 3-digit number then selects one of
the M = 8 = 2 orthogonal waveforms.

Therefore, the coder generates for each branch a 3-digit binary num-

3

28

'I'he d e m d d a t o r ferns an ordered list of length P = 4 3f the channel signal Eunbers; the

actual signal voltages are not saved.

function for the metric increment is
With this channel and using the Fano algorithm, the correct

where r is the ordered list, and R = 1 is the rate in information bits per baud.
the 8 orthogonal waveforms.

The set is.) is
J

Tote that FWr/ s.) is only a function of the position of s. on the list r. (If s. is off the list,
we shall say it is in position P + i.) On one hand, if s. is on the list, the I - 1 other members
on the list are selected from M - i zero mean Gaussian random numbers; hence, all (M - i)!/
(M - P)! combinations of P - 1 numbers a r e equally likely.
l ist , the P members of the list a r e all chosen from a set of M - 1 zero mean Gaussian random

numbers; hence, all (M - i) ! / (M - I - I)! combinations of P numbers a re equally likely. Thus,
the set of numbers (Pr(r 1 s.)) consists of only P t 1 values.

J J 3

3

On the other hand, if si is not on the

J
We shall define p - . a s the value of Pr(r 1 s.) when s. is in position i on the list r. We also

13 J 3
define

4 . . = Pr (s . in position i when s . sent)
1J 3 J

which clearly equals

q. = Pr (sent signal in position i) .
1

Thus, we can write

Also, we can see that Pr(r) is a constant over the ensemble of convolutional codes used in the
random coding theorem, since all M!/(M - I)! ordered lists a r e equally likely when each of the
s . are equally likely. (Evaluate
J

M M
1

J J J
Pr(r) = P(rIs.1 ~ (s . 1 = 2 P(r1.s.)

j= i j = 1

t o check this.) Therefore, the metric becomes

The values of qi depend on the S/N ratio, and unfortunately a r e not readily available.

The S/N ratio used determines Rcomp for this channel now that the other parameters have

The
22 values needed for this example were obtained from K. L. Jordan.

been fixed. From the paper by Wozencraft and Kennedy," an S/X ratio 4% = 2.5 represents

2 9

of 1.2 bits/baud. (E is the energy of one baud, and No/2 is the double-sided noise- . an Rcomp
power spectrum.) Thus, operating at R = 1 bit/baud represents R = 0.8Rcomp.

value was given a bias appropriate for the desired S/N ratio.

The signals used for this test were recorded f r o m a Gaussian noise generator.

The sequential decoder described here is the same one used as a programming example in

One signal

&c.IV of Appendix A. Thus, the details of the program will not be discussed here.

B. Example of Display

The program w a s compiled, assembled and loaded, and ran as expected. Figures 5(a)
through (1) show an example of the display generated during a simple search.
the algorithm at depth 73 in the tree, attempting to advance one node.
current node a r e displayed and labeled with their coded channel symbols, 0 and 7.

is on the correct path, but is about to advance on the incorrect path, labeled 7, which corresponds

to an information bit of 1 (see the displayed GEN table). The ordered list for this node shows

that signal number 7 is in position 1 on the list, while signal number 0 is in position 2; hence,

7 is the most likely branch. The fact that branch 7 is about to be chosen is indicated by the

contents of the shift register, shown at the top of the screen. The entry for this branch is a 1.

Directly under this 1 is the corresponding coded channel signal number 7.

Figure 5(a) shows
The two branches at the

The algorithm

The two alternatives available after the algorithm has advanced on the wrong path are shown

in Fig. 5(b). The algorithm
looks back to the previous node (73) and, since this node is above the threshold, it backs up to

see if the second most likely branch at node 73 will stay above the threshold. Figure 5(c) shows
that the second most likely branch, 0, fails.
is below the threshold, the threshold i s lowered and the algorithm advances from node 73 along

the most likely branch, 7 .

Even the most likely branch 4 falls below the running threshold.

The algorithm looks back to node 7 2 and, since it

Figure 5(d) shows the display after this advance. The algorithm is now attempting to ad-
vance from node 74, and this time branch 4 succeeds, since the threshold has been lowered.

Figure 5(e) shows the algorithm trying to advance from node 75.

succeeds.
76 violates the threshold.

The most likely branch, 1,

In Fig. 5(f), the algorithm finds that even the most likely branch extending from node

The algorithm re t rea ts to node 75, since it is above the threshold, and here examines the
second most likely branch. It i s shown in Fig. 5(g) that this branch, 0, fails. Again, the algorithm

backs up to node 74, because it i s above the threshold, to examine the second most likely branch.

This branch, 3 , succeeds [as shown in Fig. 5(h)], so the algorithm advances on it to node 75.

In Fig. 5(i) it is shown that both the alternatives from node 75 fail; branches 2 and 5 have
Because node the same metric increment, since neither are on the ordered list for this node.

74 is above the threshold, the algorithm re t rea ts t o it but discovers that there is no branch at
this node which it has not already examined, as shown in Fig. 5(j).
to node 73, since it is also above the threshold, and examines the second most likely branch

[Fig. 5(k)]. This time the second most likely branch, 0 (which we know to be the correct one)
succeeds; the algorithm has finally worked i ts way back to this node with the threshold reduced
enough so that the dip in the correct path stays above it.

The algorithm now re t rea ts

The algorithm advances on this branch, and is shown in Fig.5(1) on the correct path after
moving forward several branches.

30

(a) P R E P A R E TO ADVANCE O N 7. (b) T R Y TO ADVANCE; F A I L

(C) BACK UP AND CHECK 2nd
L I K E L Y ; F A I L .

(d) LOWER THRESHOLD, MOVE FORWARD.

(e) PREPARE TO ADVANCE O N 1. (f) TRY TO ADVANCE j F A I L .

Fig.5(a-I). Example of a search.

31

(0) BACK UP AND CHECK 2nd
L I K E L Y ; F A I L .

(h) BACK U P AND CHECK 2 n d
LIKELY.

(i) TRY TO ADVANCE; F A I L . (j) BACK U P ; NO M O R E BRANCHES TO
TO TRY.

(k) BACK UP AND CHECK 2 n d
L I K E L Y .

(I) BACK O N R I G H T PATH.

Fig. 5. Continued.

32

.
C. Example of Statistics

The ability of the system to collect statistical data was also tested. Histograms of the
The same data (for number of computations, search depth and waiting line were collected.

35,000 nodes) were used to collect these statistics for various values of the threshold increment

To in the Fano algorithm.
of depth greater than or equal to N, this curve is shown for three different values of the thresh-

old increment.

Figure 6 is a plot v s 9 of t h e number of t imes a search took place

The effect of this parameter on the behavior of the algorithm is quite clear, and not at all
A large value for the increment results in fewer shallow searches, but it increases unexpected.

the number of deep searches since the algorithm may advance several branches along an incorrect

path before violating a threshold. A small value f o r the threshold increment causes many shallow
searches, because even a small downturn in the metric brings on a search. However, it prevents

the need for some deeper searches by catching the downturn early.
increment is just as bad a s having too large a threshold out on the tail of the curve. The tail
represents situations where the correct path is considerably lower than some incorrect path.

With a very small increment, the threshold may have to be lowered many times to get below the

low point on the correct path and, effectively, each t ime the threshold is lowered, a search is

counted .

Having too small a threshold

Of course, it is the tail of these curves that is of most interest, since i t is this portion of the

curves which affects the behavior of the waiting line.

value for the threshold increment which is neither too large nor too small.

The curves show that there is an optimum
More than 35,000 nodes

Fig. 6. Plot of number of searches of depth >, N vs N.

33

should be processed to examine the behavior of the curves for higher values of N, but it seems
clear even from these data that the slope of the curves on the tails is a constant and is the same

fo r all the curves. This means that the distribution function behaves a s KN-O, and that a does
not seem to be a strong function of the threshold increment.

*

14 This supports the work of Savage.
Data were a l so collected on the average number of computations for the three values of the

threshold increment.
was the same one which gave the curve in Fig. 6 with the smallest tail, ITo = 50.

The value which resulted in the lowest average number of computations

D. Conclusions

F rom the limited examples presented in this section, and from other experiences gained

with the system, we conclude that the system is indeed capable of being used to study problems
in sequential decoding.
ultimate conclusion as to usefulness must wait until several persons have used the system, to
study their particular original problems.

That is to say, the mechanics of the system work a s intended. The

We also conclude that the man-machine interaction made possible by the display of the t r ee

It gives the user a far better and the use of the light pen and monitor commands is very useful.

description of, and a far better feeling for, the behavior of the algorithm than can be obtained
from printed output. It will be particularly useful to researchers relatively new to the a rea of

sequential decoding, since intuition about the process can be built up relatively quickly with the
aid of this system.

Some insight into system design, although hardly new, has been gained from our experience
with this problem. F i r s t of all, the essential starting point of the design was a thorough study
of the types of experiments likely to be performed. The next step was realization that system
implementation has a s much effect on system usefulness a s does technical capabilities.
realization prompted study of what the use r would require of the system and, indeed, a definition
of the person for whom the system was designed.

This

Without these guideposts to start from, various alternative methods of implementing the
system could not have been studied effectively to see how they satisfied these cri teria and the

usual boundary conditions of time, money and equipment availability.
The important characteristic of the decision process involved in these choices was the

tremendous interaction between seemingly distant decisions.

best was to push forward a little at a time in all areas, look for inconsistencies between de-

cisions, and then push forward again. A willingness to accept the possibility that an ear l ie r
decision was not the best, and an ability to keep in mind all the previously discarded solutions

fo r use as a substitute, a r e necessary. Otherwise, there is danger that, instead of revising a

decision, the design will be warped by forcing adaptation to the decision which proved inferior.

The author feels that the t t f l o ~ chart” method often employed in system design is not entirely
adequate, particularly for our problem, since it ignores the interactions which do exist and a r e
important.

The process which seemed to work

There i s a rather obvious a rea in which further work is necessary to increase the effective-
ness of the system.
during execution of the algorithm.
experimental equipment, and provide much la rger volumes of data than could be obtained other-

wise.
could be made available for simple channels.

One problem is to include the ability to simulate channels on the computer

This would eliminate the dependence on data collected from

Of course, this probably cannot be done for many channels of interest, but the ability

34

. A second proXen is to incorporate s u r n e device other than DEC-Tapes for storing the
ordered lists.
order of magnitude larger than the amount of data the DEC-Tape can hold.
is a bottleneck in using all the collected data. Other devices will probably become available a s

the PDP-6 system evolves.

The amount of data which can be collected on the tape recorder is at least an
Thus, the DEC-Tape

35

.
APPENDIX A

USER'S MANUAL

I. INTRODUCTION

The primary purpose of the U s e r ' s Manual is to provide a reference which gives the following

information necessary to use the system:

(a) U s e of the portable data-collection system.

(b) Description of the features of the special version of Fortran used to
program the algorithm.

(c) Description of the monitor commands to be used during execution of
the algorithm.

(d) Mechanics of using the computer to prepare a problem for execution.

II. DATA COLLECTION

The data-collection system provides the ability to record, for la ter playback into the com-
puter, the outputs of experimental communications systems.

The system was designed primarily for use with a particular form of receiver. The r e -
ceiver is assumed to be t ime discrete, and during each use of the channel one of M signals is

sent. On receiving a signal r, the receiver produces a s its output simultaneously M different
voltages related to P(r I si), one for each of the M signals (s.) .

designed to record these M voltages, each represented a s a 10-bit binary number.
The recording equipment is

Equipment used consists of ten S-H units, a 10-channel multiplexer, an A-D converter
and a Precision Instrument PS-216D digital tape recorder. The outputs of the receiver should

be connected to the inputs of the S-H units, which are labeled from 0 to 9; thus, M,< 10 can be

recorded directly. The input voltage V must be in the range -1 V,< +1 volt. An input of
- 1 volt resul ts in an output from the A-D converter of all 1's. while an input of ti volt gives all
0 ' s .

is 10,000 ohms. Note that a separate coaxial cable (marked LVR) is provided for the common

ground return of the S-H units because the coaxial shields a r e E t grounded at the S-H inputs.
This has been done to prevent ground loops.
negative polarity, swinging from t2.5 to -2.5 volts, must be supplied each time the channel is
used, at the t ime when the M outputs of the receiver are to be sampled. Again note that the

coaxial shield on this input lead is not grounded, s o a ground wire must be provided between

the tr igger pulse source and the demodulation equipment.

An input of 0 volts gives an output of 1000000000. The input impedance of the S-H units

A trigger pulse of duration t , 2 \< t \< 10 psec, and

Upon receipt of the tr igger pulse, the S-H units sample and hold the voltage at their inputs,
and the multiplexer begins to scan through them, feeding these voltages one at a time to the

A-D converter where they are converted to 10-bit binary numbers and written as successive
words by the tape recorder.
modulo 2 of the 10 bits f rom the A-D converter. A I is also written on the clock track. The
number of words to be written is determined by the number of S-H units used, which is specified
by setting the knob labeled CHANNEL SELECT t o the number of the last S-H unit used.

t ime between trigger pulses must be long enough t o allow all the data to be written on the tape.
The maximum allowable repetition r a t e depends on the setting of the TAPE SPEED knob.

the repetition rate is too high, the ALARM light will go on.

Along with each word, a parity bit is written which is the sum

The

If
Of course, the tape recorder must

37

be run at a speed at least equal to that to which the TAPE SPEED knob is set.
corder is actually moving at a higher speed, the density of data on the tape wi l l be reduced f rom
the maximum allowable.

case.

If the tape r e - .

Somewhat better performance of the recorder can be expected in this

After the voltage on the last S-H unit has been digitized and written on tape, a longitudinal
parity word wi l l be written (i f the PARITY knob is turned on).
modulo 2 of the corresponding bit in the M preceding words.
written with each word, it is possible to detect and correct single e r r o r s (at least) in each block

made during playback.

Each bit of this word is the sum
Thus, along with the parity bit

The maximum repetition rate of the trigger pulse i s once every 3000(M t f) / s microseconds,
where M i s the number of S-H channels used and s i s the setting of the TAPE SPEED knob,

provided the PARITY knob i s on; otherwise, every 3000 M / s microseconds.

The operational procedure is:

(a) Connect the M lowest numbered S-H inputs to the receiver, and also
connect the common ground (LVR). Connect the trigger pulse, adjusting
for proper polarity, duration and repetition rate.
ground return for the trigger pulse.
specified channels of the tape recorder.
cable provided is not needed.)

(b) Set the front panel switches as follows:

Be sure to provide a
Connect the output cables to the

(The special ground coaxial

TRIGGER EXTERNAL
CHANNEL SELECT to last channel to be scanned

DATA OFF

PARITY normally ON

TAPE SPEED appropriate for the repetition
ra te of the trigger

(c) Move the DATA switch to the RESET position and push the SET button
and the ALARM light. (The light must go out, or else the trigger pulse
i s incorrect.) The trigger pulse must be applied during this time.

(d) Move the DATA switch to TAPE. This will switch on the il7-volt
AC outlet at 555.
this point, since the trigger pulse is not needed in this position.
the tape transport by pushing POWER, DRIVE and RECORD, in that
order (with the speed set correctly).

(e) Record about 1 minute of blank tape to provide a leader for repositioning
the tape.

(f) Turn the DATA switch to DATA.
the next trigger pulse.

The receiver may be rese t or adjusted a s desired at
Start

Recording will begin with receipt of

(g) When recording is finished, move the DATA switch back to TAPE; then
turn off all equipment.

For further details on the data-collection system, see the instruction manuals provided by Adage,

Inc. and Precision Instrument Company.

111. ORDERED LIST FORMATION

The procedure for playback of data recorded on the digital tape recorder is described in

this section, together with instructions on the use of the programs for forming the ordered lists
for each baud.

38

- A. Tape Recorder

Adjustment of the digital tape recorder to obtain a minimum number of e r r o r s on playback
is quite critical and difficult.
I J c v d p r n -___._ maintenance information. _ _

must be made each time playback speed is changed. It is recommended that this be done a s in-
frequently a s possible.
voltage level for deciding between a 1 and a 0.

fo r details.

A special program to aid in this adjustment is described in the

Essentially, there a r e two adjustments f o r each channel which

One adjustment is the gain of the read amplifier, and the other is the
The tape recorder manual should be consulted

When DEC-Tape is used for storage of the ordered l ists , the maximum playback speed is
15M/L in./sec, where M is the alphabet size and P is the desired list length.

mended that 15 in./sec be used at a l l times, however, to avoid having to readjust the recorder.

Thirteen
coaxial cables a r e provided and should be connected to the recorder outputs specified by their

labels.

It is recom-

The tape recorder is connected to the compiiter through a special 1/0 interface.

B.

Put the DEC-Tape labeled SEQ. DECODING SYSTEM on any free drive, and set it to number

Use of Ordered List Programs

1. Mount the tape on which the ordered l is ts a r e
to be written on another drive, and set this to number 7, with the switch on WRITE.
address keys to all 0's.

should spin and the teletype give a carriage return. (If this does not happen, the paper tape
labeled MACDMP must be read in)) Type the word INPUT followed by carriage return to load
the proper program, which wi l l start automatically.

Be sure no other drive is set to number 1.

Set the
Push STOP, IO RESET and READ IN, in this order. The system tape

The program wiU begin by asking several questions on the teletype. Answers should be

typed in and terminated by carriage return. The questions are:

ALPHABET SIZE IS:
DATA BLOCK SIZE IS
LONGITUDINAL PARITY?
LIST LENGTH I S

IS MOST PROBABLE SIGNAL POSITIVE?
ADD TO SIGNAL ZERO THE VALUE
ARE YOU READY TO START?

The answers to most questions are obvious. Question (1) asks for the size of the channel

alphabet; question (2) asks for the number of S-H units used to record the data. Question (3)

asks if the PARITY switch was ON or OFF when recording. the answer is YES or NO, r e -

spectively. Question (4) asks for the desired length of the ordered list; it must be no longer

than 16. Question (5) asks for the polarity of the recorded signals - should the ordered list be

made up of the I most positive or most negative signals. Question (6) asks if a constant value

should be added to the signal corresponding to channel symbol number 0.

should be an octal number, representing the 10 bits which would have been the noiseless output
of the A-D converter had the desired input voltage been applied. This is provided for the case

The number given

t'Use of MACDMP," Memomodurn MAC-M-248, Project MAC, M.I.T. (1 July 1965).

39

where the zero message has been sent, and the simulated S/N ratio can be adjusted simply by
adding a constant to the output of the filter corresponding to channel symbol 0.

.
Question (7) gives the operator time to check his answers to the questions and make sure

that DEC-Tape 7 is ready to go.
tape 7 (be sure the tape comes to a complete stop after it rewinds) and instructs the operator

t o start the digital tape recorder.
the s ta r t of the data, since the program must find at least 1 sec of blank tape before it will accept

the data.
then return immediately to the computer console and push the levers marked IO RESET and
INSTRUCTION CONTINUE, in that order. If the program fails to find at least 1 sec of blank

tape, it assumes the tape was not positioned properly and notifies the operator to reposition the
tape and begin again.
to move.
printing out some e r ro r statistics about the performance of the tape recorder, such a s the num-
ber of parity e r r o r s it detected due to playback e r ro r s . Of course, most of these will have been
corrected by the program, if the longitudinal parity word was recorded.

When this question is answered YES, the program rewinds

The recorder must be positioned at the blank leader before

After positioning the tape, playback is started by pushing DRIVE. The operator must

When data begin to come f rom the tape recorder, the DEC-Tape wi l l begin
When the DEC-Tape is full, the computer will notify the operator and then halt, after

Should the program or the DEC-Tape be unable to keep up with the r a t e at which the data a r e
arriving from the tape recorder, an e r r o r message will be printed out.
t r y the whole playback procedure again with a smaller list length.
only solution is to slow down the playback speed of the recorder, which means completely re -

adjusting the tape recorder.

tape.

If this should happen,
Should this also fail, the

Instead, the data can be re-recorded at a lower bit density on the
This type of overflow should not happen during playback at 15in./sec.

IV. WRITING THE ALGORITHM

A. Language

The special language provided for the description of the sequential decoding algorithm is a

modification of the Fortran I1 compiler supplied with the PDP-6 computer by Digital Equipment

Corporation. This language is described in their manual "PDP-6 Programming Manual, Fortran
I1 Language." Other manuals on Fortran a r e available from IBM, but there will be minor
differences.

It is not the purpose of this U s e r ' s Manual to teach Fortran programming, although this

knowledge is necessary to some extent in order to use the modified Fortran provided with this

system.
described in the DEC manual, and the version used in the sequential decoding system.
specifically mentioned, all features available in the DEC Fortran a r e also available in this

system.

We shall confine this section to a description of the differences between Fortran 11, as

Unless

Table A - I is a listing of special statements added to Fortran, together with a few variable

and subroutine names which have special significance.
in Secs. 1 through 5 below.
initialization statements (I), and executable statements (E) .
beginning of the program, where they a r e executed only once; the latter may be used as often

as needed. The entries in Table A - I for which no type is given are not complete statements;
they are variable or subroutine names.
and must be placed before the I statements in the program.
statement discussion of this table, some general remarks must be made.

A l l the entries in this table are discussed
It should be noted that the special statements are generally two types:

The former will be placed near the

Those entries marked N a r e nonexecutable statements

Before gohg into a statement-by-

40

TABLE A-1

SPECIAL STATEMENTS IN FORTRAN

Statement Type

1.

2.

3.

4.

5.

6.

7.
8.
9.

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.
20.

21.

22.

23.

24.

25.

26.

27.

CONSTRAINT IS <int. number>

P <int.> = <octal number)

SEQUENCE <int.>

GENERATE <int.>

SHIFT LEFT <int.>

SHIFT RIGHT <int.>

ENTER SR (<int.> , <int. exp.>)

ENTER SR END (<int.> , <int. exp.>)

SR1, SR2, SR3

SR END

SR +- 0

GEN or GEN <int.>

DISPLAY INCREMENTS <sub. var.>

SCALE <number>

DISPLAY THRESHOLD <name>,

BITS PER BRANCH = <int. number>

LABEL PATH <int. sub. var.> , <int.>

ENTER BRANCH

WAIT

OTHERS

OTHERT, TOHERT

CALL CHANGE

BACKUP DEPTH IS <int. number>

LIST LENGTH IS <int. number)

BAUDS PER BRANCH = <int. number>

PROB <int. var.> , <int. number)

LOG PROB <real var.>

(<seq. description))

<name>

NODES

I

I

I

E

E

E

E

E
-
-
E
-
I

I

I

1, E

I

E

E
-
-
E

I

1

I

I

I

Statement Type

28.

29.

30.

31.

32.
33.
34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

COMPUTE SEARCH DEPTH

COMPUTE WAITING LINE
<int. number)

BEGIN SEARCH

SEARCH DEPTH

WAITING LINE

SET <var.>

CLEAR <var.>

PUSH TO <statement label>

POP

GO TO MONITOR

RESTART DATA EVERY
<int. number> NODES IS
(<var. l is t))

<node number), < l is t position))

< l i s t position))

<node number>, <list position))

RECVAL (<baud number>,

RECVAL (<node number>,

RECNUM (<baud number),

RECNUM (<node number>,
< l i s t position>)

MODE

CALL FIND (<position>,
<inf. bits), <likelihood>,
<branches/node> ,
<node number), <baud number>)

<node number>, <baud number>)

<node number>)

XFINDF ((hypothesis),

XPFINDF (<hypothesis>,

SAVE

COMMON SAVE

4i

1. Variable Names and Array Specifications

One minor, but important, change is that variable names a r e of type integer if they begin
with any of the le t te rs H, I, J, K, L, M, N, 0 and P, and a r e of type real (floating point) if the

variable name begins with any other le t ter . The integer name N is reserved fo r use a s the node
depth in the tree and should not be used for any other purpose. The integer name K is reserved
for use a s the index on the input data, that is, on the ordered l is ts . This means, for example,

that when there a r e three bauds per branch in the t ree , K = 3N.
ditions (explained under statement 25 on p. 4 7) it may be possible to omit use of K as index on
the input data, the name K may still not be used f o r any other purpose.

Although under certain con-

U s e of the declarations DIMENSION, COMMON and EQUIVALENCE are also different from
DEC Fortran.
COMMON are provided to permit direct use of the node depth N as one of the subscripts in a
subscripted variable. These special statements a r e SAVE and COMMON SAVE.

EQUIVALENCE statements a r e not permitted. Special forms of DIMENSION and

The statements DIMENSION A(256) and SAVE A(256) both reserve 256 memory locations
for a table of values of the subscripted variable A; they differ in the way A may be used in
arithmetic expressions later in the program.
subscript of A in these arithmetic expressions is confined to lie between 1 and 256 (inclusive);
i f SAVE is used, the subscript may take on any positive value, but is taken modulo 256 before
the table is referenced.

name appearing in the SAVE: statement has more than one subscript, as in SAVE B(10,256), it
is understood that in la te r uses of the variable B in arithmetic expressions, the rightmost sub-
script will always be taken modulo the number appearing a s the rightmost subscript in the SAVE
statement (256 for this example).

current path through the t r ee may be kept.
of the node depth and get the correct address.

for the ring buffer, since this is more than twice the maximum allowable constraint length of
the coder. U s e of a ring buffer having one dimension of 256 would mean, of course, that only
the data for the 256 nodes adjacent to the current value of N would be stored at any one time.

If DIMENSION is used, the allowed value of the

Thus, SAVE A(256) se t s up a ring buffer of length 256. If the variable

The intent is to provide a ring buffer in which data on the
The user may reference these data with a subscript

The number 256 is suggested a s a likely length

The statement COMMON SAVE bears the same relation to SAVE as COMMON does to
DIMENSION in normal Fortran.
conjunction with the statement

The statements SAVE and COMMON SAVE are used only in

BACKUP DEPTH IS <int. number) NODES ,

The (integer) number supplied as an argument of this statement must be the same number that

appears as the last subscript of all subscripted variables in SAVE and COMMON SAVE declara-
tions, and must be a power of 2.

Each subscripted variable used in the program must appear in one and only one of the follow-
ing statements:

DIMENSION
COMMON

SAVE
COMMON SAVE .

The arguments of all these statements are of the standard form required by a Fortran DIMEN-

SION statement.

4 2

.
Xames v;hich appear k c ~ ~ k ~ & ~ (~ ! < o r C ~ J & 1 ~ Y ~ ~ ~ ~ : \ ; S-AVE may be LI "y order. The .main pro-

gram must contain all variables which a r e to appear in common in a COMMON o r COMMOX

SAVE statement.
routine actually u s e s , but they must be the same name a s in the main program.
implemented by allocating storage for the variable (o r a r rav) within the main program and making
the name of the variable a global symbol.

value of this symbol.
variables.

Subroutines need only have in these statements t h e variables which the sub-
COhlMOPi i s

The linking loader provides the subroutines with the

No specific a rea of core memory is assigned to the storage of common

2. IF Statements

An important variation on the standard form of the Fortran llIF'l statement is provided. The

new form is

IF (ei op. e2) nl, ELSE n2

where e
operator chosen from the following set:

and e i 2 are expressions not necessarily of the same kind (integer or real) , op. is an
~~

Operat or Meaning

. G. greater than

. GE.

. E. equal

.NE. or .N. not equal

. LE.

. L. less than

greater than or equd

less than or equal

and ni and n2 a r e statement labels.

a value for n
last form of the IF statement which is so useful in describing the algorithm.
inequality (or equality) is t rue upon evaluating the expressions el and e2, then the next statement
executed is that labeled nl; if it is false, the next statement executed is n2.

of DEC Fortran IF statement is also allowed.

ELSE may be omitted if desired. If IT, ELSE n2" is omitted,
is assumed which represents the succeeding statement in the program. It is this 2

If the indicated

The standard form

3. Coder Statements

Special statements 1 through 12 in Table A-l have been added to control a convolutional

coder subprogram.

used to generate all the hypotheses for a single node.
which information bits enter from the left each time the coder is used.
check bits a r e generated by parity nets. A check bit is formed by taking the sum modulo 2 of

the contents of all the stages of the shift register to which i ts modulo-2 adder is connected.

The incoming information bits, plus these check bits, a r e then grouped a s desired into bauds.
The output of the coder for each baud thus is a binary number of, say, x bits, thereby specifying

one of ZX different channel waveforms.

The form of the coder modeled is shown in Fig. A-1. It is intended to be

The coder consists of a shift regis ter into
A number of binary

Statement 1

CONSTRAINT IS <int. number)

4 3

SHIFT REGISTER -UP TO i oe BITS

Fig. A-1. Convolutional coder.

is used to set the length of the shift register, up to a maximum of 108 bits. Statement 2

P <int.> = <octal number)

is used to specify the parity nets by giving an octal number which, when expanded to binary form,
indicates whether or not each bit of the shift register is connected to the modulo-2 adder.
implies connection; a 0 implies no connection.) Thus, 1'1 = 4 3 1 (100011001) means check bit

number P1 is the sum modulo 2 of bits 1, 5, 6 and 9 of the shift register.
must be filled out with zeros to some multiple of 12 octal digits.

octal digits are allowed.

(A 1

The octal number
Of course, no more than 36

Any number of parity nets may be specified, but only 36 may be used.
Statement 3

SEQUENCE <int.> (<seq. description>)

is used to specify how the information and check bits are to be grouped to form the complete

branch signal.
statements may be used.

The sequence description consists of a string of symbols separated by commas.
symbols are:

Since several different groupings may be needed, several different SEQUENCE
Each is given, as an identifying number, the number before the "(."

The allowed

Symbol Meaning

S shift right one bit
I information bit
B end of baud

P <int.> check bit from parity net P <int.>

Thus, the statement

SEQUENCE 1 (S, S, I, Pi, B, I, P 2)

means that, when called upon to do so, the coder is to shift right two places, then output the
sequence of one information bit followed by a check bit from parity net P1 for baud 1, and the
second information bit followed by a check bit f rom parity net P2 for baud 2.

a tree with four branches per node and two bauds pe r branch.

is 4.

This represents
The alphabet size for each baud

Note that the number of S 's must be a t least equal to the number of I 's , and must be less

44

'than or equal to 4 (thus allowing trees with up to Z4 = 16 branches per node). Any number of
SEQUENCE statements may be used, SO long a s the over-all total number of 1's and PIS does
not exceed 36. There can be no more than nine R ' s in any SEQUENCE statement.

Stztements 1, 2 2nd 3 a r e initialization statements, and should be executed only once by
placing them at the beginning of the program (after the DIMENSION and SAVE statements).
CONSTRAINT statement must appear before any use of SEQUENCE.
the convolutional coder which has been initialized by these statements, statement 4

The
When it is desired to use

GENERATE <int.>

should be used. The integer in this statement refers to a particular SEQUENCE statement. The

effect of the GENERATE statement is to generate the signal numbers on all the branches stemming
f rom the present node in the t ree . After execution of the GENERATE statement, the channel

signal numbers for the f i rs t baud along one of the branches may be obtained by referencing a
table GENI(I), where I is a variable having value equal to the decimal number to which the in-
formition bits on the desired branch correspond. Likewise, the channel signal numbers for the

second baud will be found in the table GENZ, etc. The table GEN has the complete sequence of
binary digits for the entire branch.
contain t h e encoded channel symbols, since GEN1 would be identical to GEN in this case.
that GENi(1) is an integer valued quantity ranging from 0 to ZX - 1, where x is the number of
check and information bits in the f i r s t baud, despite the fact that G generally means a - real

variable.

If there is only one baud per branch, then only GEX will
Note

Each time GENERATE is used, the shift register will be shifted right, pushing information

bits off the end of the shlft register.
these binary digits, and if they are to be preserved they must be saved before the next execution
of GENERATE.
with 0 ' s as shifting occurs.
regis ter after execution of GENERATE by use of statement 7

The integer variable SEEND is given ;i v a h e equal to

Execution of GENERATE causes the left end of the shift register to be filled in
Other information bits may be entered into the left end of the shift

ENTER SR (<int .>, <int. exp.))

where the integer is the number of bits (64) to be entered; these bits are taken from the low
order end of the integer expression presented as a binary number.
or equal to 4 may also be entered a t the right end of the shift register by use of statement 8

Any number of bits less than

ENTER SR END (<int .>, <int. exp.)) .
The shift register may be shifted right or left up to 4 bits by use of statements 5 and 6

SHIFT LEFT <int.>
SHIFT RIGHT <int.> .

The shift regis ter may be cleared to all 0 's by statement 11

SR-0 .

The shift register is actually stored as three computer words of 36 bits each. These words

may also be directly referenced a s the integer variables SR1, SR2 and SR3.

4. Display Statements

Several statements have been added to control the display. All except two a r e initialization

statements and should be placed a t the beginning of the program. Statement 13

45

DISPLAY INCREMENTS <sub. var .>

is used to specify what name has been given to the increments in metric fo r each branch in the

t ree .
SAVE statement as a single subscripted variable.
example of use of this statement is

It is expected that, if this statement is used, the name chosen wi l l have appeared in a
The name may be either real or integer. An -~

SAVE LAMBDA (256)
BACKUP DEPTH IS 265 NODES
DISPLAY INCREMENTS LAMBDA .

The effect of statement 13 is to insert additional code after every assignment statement involving
the variable so named, such that each new branch increment is passed along to the display

routines .
Statement 14

SCALE <number)

is used to set the display size.
ment 13 and have a positive value equal to that which, when taken on by a branch increment,

will cause a branch to be displayed having a 45" slope.

The number should be the same type as the name used in state-

If it is desired to display a horizontal line as a threshold, statement 15

DISPLAY THRESHOLD <name>, <name>

is used.
to the threshold, and the second name is that given to the unit by which the threshold may be
incremented. Horizontal lines will be plotted at the value of the threshold and a t all increments

above and below it.
be displayed.
statement involving the threshold name.

The two names must be the same type, integer or real. The f i r s t name is to be given ~-

If the value of the threshold increment is zero, only the threshold line will

The effect of this statement is to insert additional code after every assignment

The channel signal numbers along the current path through the tree may be displayed by use

of statement 17

LABEL, PATH <int. sub. var .>, <int.> .
The first argument of this statement i s the name of an integer subscripted variable (appearing
in a SAVE statement), into which the user has caused the program to insert the appropriate chan-
nel signal numbers.
the display, above the branch to which they correspond. If the second argument of statement 1 7

is not 1, it is expected that the variable given a s the first argument of the statement will be
doubly subscripted, the first subscript having maximum value equal to the second argument of

statement 17 . For example,

The contents of this table a re displayed as octal numbers across the top of

SAVE HYP (3, 256)
LABEL PATH HYP, 3 .

The contents of the shift register itself are displayed f rom right to left ac ross the top of the

screen a s binary digits, grouped into the number of information bits per branch (above the branch
to which they correspond), which is specified in statement 16

BITS PER BRANCH = <int. number) .

46

This statement may appear mywhere in the prugrani, so that the tree st1-iliiiiI.e may be charigeb

a t will. However, to do SO will cause a temporarily incorrect display of the shift register.
A s the algorithm is executed and the t ree search is accomplished, the display of the tree

structure changes; normally this would be done a t computer speed, which would result in change
so rapid the eye could not follow it. To slow down this change, statements 18 and 19

ENTER BRAXCH
WAIT

a r e used. Both these statements cause a deiay for a fixed time before the next st.atement is

executed: t ime for the human eye to react.

mand SPEED.
through the tree has occurred since the last execution of statement 18 (i.e., after an assignment

The length of this t ime is set by t h e monitor com-

Statement 18 may be inserted only at a point in the algorithm where an advance

statement us ing iiie ar-guliieiit of staieiiieiit i 3 has bee= executed).

when backing up, or a s a second delay point af ter a branch has been entered.
u s e 18 after the new branch has been computed, and use 19 after the branch has been accepted

and N increased.)

Stater.ent 10 shndl ! be csed
(For example,

So far, the display does not show all the branches a t a node, only the one branch the algo-

ri thm is considering.
of the monitor command OTHERS = 1. This requires that the user insert in his algorithm a test
on the value of the Xfariable OTHERS and, if it is nonzero, all the branch increments at this node
should be computed and placed in the table OTHERT (which must not appear in a DIMEXSION

statement) if the increments a r e type integer, and in the table TOHERT if the increments a r e

type real .
will be the information bits for the branch to which the increment corresponds.
branches have been computed, statement 22

It is possible to display and label all t h e other branches a t the node by use

They should be placed in the table in an order such that the index on the table entries -
After all the

CALL CHANGE

must be executed to cause the new table entries to be displayed.

this computation should not be done.
turned off by the monitor command MODEO, in order not to s low- down the t ree search with un-

necessary cornputation.

If OTHERS has a value of zero,
OTHERS is automatically set to zero when the display i s

5. Other Special Statements

A large number of more-general statements has a lso been included, and wil l now be es -

plained.
47. Statement 24

Statement 2 3 has already been discussed a s used in conjunction with statements 46 and

LIST LENGTH IS <int. number)

is an initialization statement which is very important. It requires that the user specify the
length of the ordered lists which had previously been formed and written out on DEC-Tape. Of

course, the user need not make use of the entire list, but he must specify the length of the l ist

that was formed.
needed and in the correct place to be referenced by the user ’s program.

This statement allows the monitor system to put the input data in memory a s

Statement 25

BAUDS PER BRANCH = (int. number)

47

serves an important function. Its presence determines that there is a fixed number of bauds on
each branch of the tree. If this is the case, a direct translation can be made between N and the

index K of the ordered list for the f i rs t baud of branch N.
the use r need not update K whose value is then automatically set to the value of N.
25 is not used, N and K become separate variables and it is the responsibility of the use r to
keep K up to date, a s well as N. This is more difficult, but is necessary if the use r desires
to assign two bauds to one branch, one baud to the next branch, and three bauds to the following
branch. Statement 25 is an initialization statement and may be used only once, a t the beginning

of the program.

Thus, K is no longer needed and

If statement

Statements 26 and 27

PROB <int. var.>, <int. number)
LOG PROB <real var.>

a r e used to collect statistical data about the values attained by some quantity.

a real variable, use statement 27, with the name of the variable as i t s argument.
ment causes a histogram on the log2 of the specified variable to be computed.
2 which a r e measurable range from +127 to - 127.

statement 26, with the first argument the name of the variable and the second argument an integer
number which is the grain size for the histogram to be recorded. The variable must be positive
valued only. Maximum value allowed is 256 t imes the grain size; any higher value wll l show up

in the highest entry in the histogram.
entries, which is put out automatically when the program exits.
ment 26 or 27, but not both, is allowed and it must be at the beginning of the program.

If the quantity is

This state-
The powers of

If the quantity is an integer variable, use

The result of these statements is found in a table of 256
Only one use of either state-

Statement 28

COMPUTE SEARCH DEPTH

computes histograms of the number of nodes backed up in t r ee searches-and of the number of
computations performed during these searches.
grain size of the search depth is 1, while the grain size of the number of computations is 4.

Statement 28 is a n initialization statement and appears a t the beginning of the program.

ment 30

Both histograms have 128 sample values. The

State-

BEGIN SEARCH

must be used with statement 28, and should be placed so that it is executed whenever a search

has begun. A search

is defined to be over when the value of N exceeds the value which N had when the search began.

The search depth is this initial value of N minus the minimum value of N attained in the search.
A computation is counted every time the statements N + N t 1 o r N + N - 1 a r e executed during

the search.
special integer variable, SEARCH DEPTH (statement 31).

It does not matter i f it is executed again during the course of the search.

The search depth a t any time may be known by the program from the value of the

Statement 29

COMPUTE WAITING LINE <int. number)

computes a histogram of the waiting line sampled a t uniform intervals of "time." The argument

of statement 29 is an integer number, which gives the ratio of time for one baud to be received

48

. to rim-e tc. advance - 5 + i) t)r rrireai (iu' - 3 - i) one node i n the t ree c?f the simulated de-

coder. A sample of the waiting line is taken every time a baud is "received." The histogram has
128 sample values, from 0 to 127. The value of the waiting line at any time may be known from
the value of the special integer variable WAITING LINE (statement 32).

initialization statement and must be placed at the beginning of the program.

Statement 29 is an

Both statements 28 and 29 rely on the presence of statements N - N + 1 and N - K - 1, which
a r e the only allowable ways to change N if these statements a r e to be used, and they both insert
additional code after N - N + 1 and N - N - 1 which construct the required histograms.

Statements 33 and 34

SET <var.>
CLEAR <var.>

"ay 5e used t= set 2x2 clear Zags h v i i i g ariy riame desired.

should always be tested against 0 when used in an IF statement.
Cleared flags have v a k e 3, and

Statements 35 and 36

PUSH TO <statement label)
POP

provide ways to enter and exit internal subroutines.
appear more than one place in a program, they need not be rewritten every time.
be written out once at some location in the program where they cannot be reached directly (e.g.,
immediately following a GO TO statement), terminated with the statement POP, and the first
statement given a label. Then, wherever this sequence needs to be used, statement 35 should
be inserted instead, with its argument being the statement label of the start of the statements
required.
is executed control returns to the statement right after the PUSH TO. Obviously, PUSH TO
saves the re turn location in the program on a push-down list and then transfers control t o the
specified statement.
t ro l back to the return point.

If an identical sequence of statements must
They should

The results of this are that PUSH TO has the same effect as GO TO, but when POP

POP retrieves this information from the push-down list and t ransfers con-

Statement 37

GO TO MONITOR

transfers control to the monitor system when executed.
teletype and will stop the execution of the decoding algorithm in the same manner as if the oper-
a tor had typed STOP on the teletype.

The monitor wil l type READY on the

Statement 38

RESTART DATA EVERY <int. number) NODES IS (<var . list))

is a very important one, since it allows the algorithm to be restarted (s o that a particular part
of the t r ee search may be repeated) and it allows the display to be turned off and then turned
back on again,
time the algorithm advances the specified number of nodes.
a finite number of restart points, usually about ten.
stored away to enable the algorithm to be restarted should be put on the variable list, which is

a sequence of variable names separated by commas.

Data that will allow the algorithm to be restarted a r e automatically saved each
Data may be stored away for only

The data that the use r decides must be

The first entry in the variable list must

49

be the name whose value is the total of the branch increments to the current point in the tree.

It is usually necessary to save several complete tables of information; after putting the word
TABLES on the variable list, the names of these subscripted variables are placed las t . Each
table name must be followed by an entry on the variable list which is the total dimension of the

table, obtained by multiplying together all the maximum subscripts of the variable, a s given in

the DIMENSION or SAVE statement. An example of the correct form would be:

RESTART DATA EVERY 5000 NODES IS (L, T, TABLES, HYP, 256, LMBD, 256) ,

(The contents of the shift register are automatically saved.)
Statement 38 must appear once and only once in the program. It must be placed in the main

flow of the program, where it will be reached each time the algorithm advances.

reached by means of the PUSH TO statement.
START a r e used, the specified data a r e restored and execution of the algorithm begins with the

statement just a f te r statement 38.
it is executed, and i f IT has reached the next res ta r t point, the current values of all the variables
on the l i s t are computed and stored away on a push-down list. Each table whose name appears
on the variable list is written out on DEC-Tape number 6 .
the push-down l is t for each res ta r t point is

It cannot be
When the monitor commands REPEAT or RE-

Statement 38 works by checking the value of N each t ime

The amount of storage required on

6 t 2 A t B

where A is the number of variable names, and B is the number of tables on the list (in the pre-

vious example, A = 2 and B = 2).
points which may be saved is easily computed.

The push-down list is 192 long, so the number of r e s t a r t

Statements 39, 40, 41 and 42

RECVAL (<baud number), <node number), < l i s t position))
RECVAL (<node number>, (l ist position>)

RECNUM (<baud number), <node number), <list position))
RECNUM (<node number), <list position>)

a r e used to reference the input data (the ordered l is ts) .
a s a simple integer variable, except that they may not appear on the left side of an assignment

statement.
of the specified list member, and RECNUM has value equal to the signal number of the specified

l is t member.
argument greater than 1; otherwise, statements 40 and 42 should be used.

been used with an argument of 1, the node depth N should be the f i rs t argument of statements

40 and 42. If statement 25 has not been used at all, the f i rs t argument of statements 40 and

42 should be the index on the ordered l i s t s E;.

These expressions a r e to be treated

They a r e actually open subroutines. RECVAL has a value equal to the signal value

Statements 39 and 41 should be used when statement 25 has been used with an
If statement 25 has

Statement 43

MODE

is an integer variable whose value is 0 a f te r the monitor command MODE0 has been used to

turn off the display.
turn on the display.

MODE has value -1 if the monitor command MODE1 has been used to

(It is initially turned on.)
Statement 44 is a subroutine call which has six arguments. A typical use might be

CALL FIND (POS, INFB, LI, 4, IV, 2)

5 0

. which gives to PQS ;i ~ d u c cqua? t G the position on t!?c ordered list cf the LIth x o s t 1ikekT h;;poth-

es is , that is , encoded signal number, when there are four branches pe r node, at node N and

baud 2.
hypothesis corresponds.

must be 0. A hypothesis is counted a s being the LIth most iikeiy if it is the iith hypothesis on
the ordered list of signal numbers for this baud. For example, If the four hypotheses (from an

alphabet of 16) w e r e 0, 7, 3 and 10, and the ordered list of signal numbers (of length 8) for this

baud was 1, 0, 3 , 5 , 7, 12, 2, 11, then signal number 0 is the most likely signal and is in position
2 on the ordered list; 3 is second most likely, being in position 3; 7 is third most likely, being
in position 5; and 10 is fourth most likely, being in position 9 (off the list). If not all the hypoth-

eses are on the ordered list (e.g., only two a r e on the l ist) , then for some values of LI (>2), POS
will have value P t 1 (where P is the list length) indicating that the hypothesis is off the list.

Simultaneously, LTFB is given a value equal to the information bits to which this

When there is only one baud per branch in the t ree , the last argument

Since there may be more than one hypothesis off the l ist , and these hypotheses a r e ail considered
equiprobable, a "random" choice is made between them to find the value of INFB.

is random, but repeatable, and no other value of LI will yield the same value of INFB.
This choice

Statement 45

XFINDF (<hypothesis>, <node number), <baud number) 1

is an integer function whose value is the position on the ordered l is t of signal numbers of the
hypothesis (the encoded symbol) specified by the first argument for the node, and baud specified
by the second and third arguments.
the value returned is I t 1.

Statement 46

If the list length is P and the hypothesis is not on the l ist ,

XPFINDF (<hypothesis>, <node number))

is the same a s statement 45, except that only one baud per branch is assumed.
used to index the ordered l ists , it may be used a s the second argument of statement 46.

If K is being

Statements 47 and 48 have already been discussed.

B. Use of Language

Use of the special language can best be explained by example. The first step in writing the
We shall take as a starting point algorithm i s to formulate it in te rms of a word flow diagram.

the word flow diagram of the Fano algorithm used by Wozencraft and Jacobs (see Fig. 3) .

description of the flow chart is included in Sec. I-B-2,
precise enough detail to be able to w r i t e th is flow diagram is half the programming effort.

A

Actually, formulating one's ideas in

1. Symbolic F low Chart

Note that there are two types of boxes in the word flow diagram: one in which operations
a r e carried out, and one in which a question is asked.
more) exits, depending on the answer.

The question boxes have two (or possibly

The next step is to reformulate this flow diagram in t e rms of mathematical notation
(Fig. A-2).

quantities they represent a r e to be rea l o r integer.
and IT is the threshold value.

in a table named LMBD.

We have carefully chosen names fo r the variables, keeping in mind whether the

The name L has been used for total metric, __ --
The threshold increment is ITO. Metric increments are stored

Note that we have implemented the problem of what likelihood branch

51

5 2

* te e x a m z e at box 1 by setting a subscripted variable L l (N) to the likelihood of the branch to be

tr ied next.
In Fig. A-2, we draw a distinction between the two kinds of boxes in the word flow diagram

by drawing the question boxes a s diamonds. All questions must be formulated a s comparison
of two algebraic expressions, with the routes leaving the diamond labeled with the appropriate
inequality. The other boxes, where operations a re carried out, can almost always be formulated
in t e r m s of evaluating an algebraic expression and assigning this value to a variable.

After all the boxes have been numbered, a translation to Fortran can be made. Each diamond
box becomes an IF statement, and each of the other boxes will usually be a series of assignment
statements, terminated by a GO TO n statement, where n is the number assigned to the next
box in the flow diagram. The Fortran statements for each box are then written down, labeling

the f i r s t statement with the box number.
any order, but following more or less the same order a s the flow diagram enables removal of

many GO TO statements and the use of the IF statement of one argument, since the following
statements a r e those to be executed next.
Fortran program shown in Fig.A-3. Clearly, statement labels 2, 3, 4, 6, 9, 13, 14, 15, 16, 17

and i 9 a r e unnecessary since they are never used in a GO TO or an IF; however, since they
do no harm, we shall leave them.

These groups of statements may be written down in

Making this translation, we obtain the skeleton

2. Statements for Metric and Coder

Before going further, we must specialize the algorithm to a particular tree structure and
metric function. We will use the example of a binary t ree , alphabet of 8, ordered list length
of 4, and a riletric that is only a function of the position of the hypothesis on the iist.

now add to the skeleton program, obtaining the program shown in Fig. A-4.
be made by inserting statements according to type rather than by starting at the beginning of
the program and working forward.

We shall

The additions will

The evaluation of the metric increase LMBD takes place at statement 1 in the program, and

for a given hypothesis consists only of getting a value from a table, say IDIST, of 4 + 1 = 5

entries, where the index to be used on the table is the position of the hypothesis on the ordered
l ist .

POS of the LI(N)th most likely branch.

value in case we back up - thus, LMBD is a table (indexed by the node depth) and must appear
in a SAVE statement. The values shown for the table IDIST represent metric increments ap-
propriate for an S/N ratio d q = 2.5, when the additive Gaussian channel is modulated with
eight orthogonal signals!

(If not on the list, u se 5 a s the index.) We can use the subroutine FIND to get the position

When we compute LMBD for a branch, w e must save this

Next, we must insert the statements for using the convolutional coder. First of all, the
SEQUENCE statement will be

SEQUENCE 1 @,I, Pi, P2) .
The CONSTRAINT statement and the definitions of P i and P2 must a lso be entered at the beginning
of the program.
statement 1 in the program.

We must insert the GENERATE statement before computing the new LMBD, at

After selection of a particular branch t o try, the information bit

~ ~~~

tThese numbers were computed from datu supplied by K . Jordan of Lincoln Laboratory.

53

2ki: N + 0
I T + 0
L + 0
SR + 0
CLEAR FLAG
L I (0) + 1

1: LMBDCN) + 7 7 7

2: I F [LT .L. I T 1 11

3: N + N+l

LT + L + LMBDCN)

4: I F [FLAG .NE. 0 1 8

5: I F [IT + I T 0 .G. LTI 7

6: I T + I T + I T 0
GO TO 5

7: L LT
LICN) + 1
GO TO 1

8: I F f I T + I T 0 .G. L1 10

9: I F [I T + I T 0 .LE. LTI 7

10: CLEAR FLAG
GO TO 5

11: SET FLAG

12: I F [N .E. 0 1 18

13: LB + L - LMBDCN-1)

14: I F [LB .L. I T 1 18

15: N + N - 1
L + L B

16: I F [L I (N) .E. 21 12

17: LICN) + LICN) + 1
GO TO 1

18: I T + I T - IT0
19: LICN) + 1

GO TO 1

Fig. A-3. Skeleton progmm.

54

TITLE DECODE

SAVE L I (256) 9 HYP(256) 9 LMBD(256) 9 I S R (2 5 6)

Cf MENSI O N I DI ST(5)

BACKUP DEPTH IS 256 MODES

LIST LENGTH IS 4

BITS Pm BRp.?lr.)i = I

BAUDS PER BRANCH = 1

DISPLAY THRESHOLD I T , I T 0

DISPLAY INCREKENTS LHBD

LABEL PATH HYP, 1

COMPUTE WAITING LINE 2 0

COPIPUTE SEARCH DEPTH

CONSTRAINT IS 61

SEQUENCE 1 (5, I , P 1 , P 2)

p i = m e 3 6 9 1 4 5 7 6 2426 3 8 5 4 8 0 0 0

P2 = 5431 2256 7 7 2 2 3264 7642 0 8 0 0

SCALE 32

I D I S T (1) + 1 7
I D I S T (2) + -13
I D I S T (3) -29
I D I S T (4) + -41
I D I S T (5) + -64

I T 0 + 5 1

29: N + B
I T + 1
L + 0
SR + 9
CLEAR FLAG

IVLM + 111
ISDH + 25

Lice) + 1

Fig. A-4. Complete program.

55

1: RESTART DATA EVERY 5 8 9 0 NODES IS (L , I T , FLAG, TABLES, L I , 256,\
LMBD, 256, ISR, 256, HYP, 256)

ICOUNT +ICOUNT + 1

I F [VAITING LINE .Le IWLMl 3 1
TYPEOUT 5 1 , WAITING LINE

GO TO MONITOR
51: FORMAT (17H WAITING LINE IS ,I7>

31: I F [SEARCH DEPTH .L. ISDMl 32
TYPEOUT 5 2 , SEARCH DEPTH

52: FORMAT (17H SEARCH DEPTH IS , I5)
GO TO MONITOR

32: GENERATE 1

CALL FIND (POS, J, L I (N > , 2 , N , 8)

ISRCN) + SREND
ENTER SR (1 , J)
HYPCN) + GENCJ)

LT + L + CLlrlBDCN) + I D I S T (P 0 S) I

I F [OTHERS .E. 8 1 2

OTHERT(1) + IDIST[XPFINDF(GEN(O) , N) 1
OTHERTC2) + IDISTIXPFINDF(GEN(1) , N) 1
CALL CHANGE

Fig. A-4. Continued.

56

3: N + N + l

4: IF [FLAG O N E . I 1 8

5: IF [IT + I T S . G o LTI 7

6: IT +- IT + IT0
GO TO 5

7: i + if
LICN) 1
WAIT
GO TO 1

8: IF [I T + IT0 . G o L1 1 8

9: IF [IT + IT0 .LE. LTI 7

10: CLEAR FLAG
GO TO 5

11: BEGIN SEARCH
SET FLAG
SHIFT LEFT 1
ENTER SR END (1 , SRENC)

12: I F [N .E. 0 1 1 8

13: L3 t L - LMBDCN-I)

14: IF [LB .Lo IT1 1 8

15: N + N - 1
SHIFT LEFT 1
ENTER SR END (1 , ISRCN>>
L + L B
WAIT

16: I F CLICN) .E. 21 1 2

17: LICN) +- LICN) + 1
GO TO 1

18: IT +- I T - IT0
19: L I (N) - 1

GO TO 1

END

Fig. A-4. Continued.

57

for this branch must be put into the shift register, and the bit which has fallen out the end of
the shift register must be saved in the table which w e wil l call ISR.
fo r the path chosen will be saved in a table HYP which must appear in a SAVE statement.
the branch tried be unsuccessful, the shift register must be shifted back to its original position

and the bit on the end restored (at statement 11).

15), the shift register must again be shifted left and the end bit restored, getting the bit f rom
the table ISR.

The encoded signal number

Should

Should it be necessary to back up (statement

3. Statements for Display

Next, statements to cause the correct display must be added. Clearly, the threshold wil l
be displayed by use of the initialization statement

DISPLAY THRESHOLD IT, IT0

and the branches wil l be displayed by use of

DISPLAY INCREMENTS LMBD .
Since we saved the channel signal number (the encoded symbol) for the branch we have taken in
the table HYP, the use of

LABEL PATH HYP, 1

will cause the current path to be labeled.
assigned to IT0 and IDIST.

The SCALE of the display depends on the numbers

If we want t o display both hypotheses at the current node by use of the OTHERS = 1 monitor
command, we must evaluate the metric increase for each hypothesis and put these values in the
table OTHERT.
the function XPFINDF to calculate the metric increases.
ments if OTHERS has the value 0.

This must be done along with the statements for box 1. We will make use of
Of course, we wi l l bypass these state-

The most critical part of the display is positioning the checkpoints in the algorithm. Clearly,
just after a new branch has been computed w e must insert ENTER BRANCH.
done at point A in the flow chart.

we should insert another checkpoint at B.
after the threshold has been lowered (point C). If, instead of lowering the threshold, N is r e -
duced by i, we should have a checkpoint at D. Note that point D is also inside the loop from
box 16 to box 12, so that i f a re t rea t of more than one node happens, the program wil l reach a
checkpoint after each reduction of N.

This should be

After the branch has been accepted and the threshold raised,
If the branch fails, we should insert a checkpoint

Points B, C and D should have a WAIT statement.

4. Statements for Collection of Statistics

We shall also compute the distribution of the waiting line, under the assumption that the
ratio of time for one baud to be received to time to advance one branch is 20.

the search depth and number of computations on a search will be computed also.

BEGIN SEARCH should be inserted when a path fails, at statement 10.

check to see if the waiting line exceeds 100 o r the search depth is greater than 25. If either of
these conditions exists, we shall GO TO MONITOR, thereby stopping the decoding, after typing

out an appropriate message.

by placing the statement

Histograms for
Clearly,

At statement 1, we will

We shall also count the number of t imes box 1 is passed through

58

ICObWT - ICGbTU i. 1

with the statements for box 1 .

5. Restart Ability

In order to res tar t the algorithm, we will insert the statement RESTART DATA.. . at state-
-ment 1. The quantities which must be saved a r e L, IT and FLAG. The tables LI, LMBDA,

HYP and ISR must also be saved. If all these entries a r e known, then the state of the coder is
irnown and the algorithm can L e i-estaried at this point..

are automatically saved.
Xote that. the cmterits of the shift register

A few more obvious initialization statements are needed. Before entering box 1 in the
algorithm, the variables IT, FLAG, N and L must be set to 0 and the shift register cleared.

IIVLE.! LM! ISM. LI(0) m,l& he set t e 1. Vdiizs LziGst d s o 52 assi,r,ed t= ITC,

C.

To compile and assemble a Fortran program, the following procedure should be used.

Use of Compiler and Assembler

Put
Neither the tape marked SEQ. DECODING SYSTEM on drive 1, and the user 's tape on drive 2.

tape should be write locked.
a s a DEC-Tape file on the user ' s tape by using TECO (see below).

It is assumed that the program to be compiled has been entered

Start MACDMPT by pushing STOP, IO RESET and lifting READ IN. Next, type FORTRN

followed by carriage return to load the compiler. Type

lEI2ER <name>@C@@

where <name> is the name of the file to be compiled, and ($) is the key marked ALT. MODE.
A name is constructed of one or two combinations of up to six characters each.

(if there a r e two halves) must be separated by a space.
there have been any e r r o r s in the program. Now type

The two halves
When Fortran is finished, it will tell if

EFTEMP@D@@

to enter the machine language program (just compiled by FORTRX onto the system tape) under
the name TEMP, and return to MACDMP.

If there were no e r r o r s in the compilation, proceed to the assembly. If there were errors ,

they must be found as follows and corrected.

may be found by u s e of TECO.

The statements which Fortran refused to parse

Type

TECOU

(by we mean carriage return), then

iERTEMP@Y@@ .
The machine coded program will appear on the display. Now type

St @@
and a statement which Fortran could not translate will be found on the line above the blinking

pointer. Other such statements may be found by typing

t"Use of MACDMP," Memorandum MAC-M-248, Project MAC, M.I.T. (1 July 1965).

59

lLSt@@ .
Changes must then be made in the original program by use of TECO?

Once a compilation has been made with no e r ro r s , the machine coded program may be
assembled into a relocatable binary file by (while in MACDMP) typing

MIDA&

to load the assembler, then

ZEIIERTEMP@A@@ .
The assembler will type the name of the program twice and then type out the location of the con-
stants storage a rea , When this typing is completed, type

EF <name> @D@@

and the binary file will be entered on the user ' s tape under the name specified. Note that this
name should be different from the original Fortran program, in order to preserve them both.

The procedure described here will work, but it is not the only one. A more complete de-
scription of TECO, MACDMP and MIDAS will be found in the appropriate MAC memoranda, and
knowledge of their command structure will suggest variations which may be used. Likewise,
the u s e of TECO to write micro-tape files from punched paper tape and edit corrections into

programs will not be discussed in detail here, but should be learned by the user from the TECO
memorandum. Briefly, to write a micro-tape file from a paper tape, enter MACDMP and type

TECO, .
Then type

2EIY 100PEF <name>@@

where <name> is the name to be assigned to the file to be written on tape 2.

V. RUNNING THE PROGRAMS

A. Loading the Programs

Before loading the programs for a run, make sure the tape marked SEQ. DECODING

SYSTEM is on drive 1, the use r ' s tape is on drive 2, the data tape (of ordered l i s t s) is on drive

7, and a scratch tape is on drive 6 and is not write locked. MACDMP should now be started by

depressing STOP and IO RESET and then lifting READ IN.
Once all the programs needed have been assembled, they must be put together into one pro-

gram by using the Linking Loader which is on the system tape along with the system programs.
Using MACDMP, load the Linking Loader by typing LOADER followed by carriage return.
file directory f o r any tape may now be listed by typing <tape number>F@@.) Now load the

systems programs by typing

(The

~MSYSTEM@N@@ .

MFORSE . @ N@ @

Then, when the tape stops, type

~ -

t"PDP-6 TECO (July 1965)," Memorandum MAC-M-250, Project MAC, M.I.T. (23 July 1965).

6 0

-if there are azy I/O staterr?en+s in the user ' s program, o r if the automatic collection of statist ics

is used.
load the use r ' s programs from the user ' s tape by typing

If FORSE. is not loaded, the programs will still run, but no 1/0 wi l l take place. Xex-t,

2~ <name> @LO@
where 2 is the u s e r ' s tape number 2nd <name> is the name of the relocatable binary file to be

loaded.
loaded, type

Any number of programs may be loaded this way. After these programs have been

~MLIBRARY@N@@

to load any l ibrary programs which may have been requested. Next, type

?@@

and the loader will print out the names of all the programs which have been loaded and where

they a r e located in memory. If any unsatisfied l ibrary requests remain, they will be printed
out under the name of the program requesting them. If there a r e no missing programs, type

TD@@

to load DDT. All programs have now been loaded.
saved a s a single program by typing 2@ followed by D@ <name>

user ' s tape, number 2, is not write locked.

be loaded by using MACDMP, simply by typing 2@ followed by <name> 0 .)

The entire contents of memory may now be
after making sure that the

(In the future, this entire set of programs may then

Execution of the program may be started by typing G @ followed by START@G.

B. Use of Monitor System

Table A-2 lists the monitor commands which may be executed by using the teletype. All

commands must be terminated by a carr iage return to cause execution.
e rase all typing back to the last carriage return.
take a numerical argument, which must be typed in before the carriage return.
ignored.

Typing rub-out will
Commands which end with the character "="

Spaces are

TABLE A-2

M O N I T O R C O M M A N D S

1. R U N

2. STOP

3. STEPS =

4. G

5. SPEED =

6. GO T O N =

7. MODE0

8. MODE1

9. OTHERS =

10. DATA AT N =

11. RESTART AT N =

12. REPEAT

13. STORE

14. DDT

15. EXIT

16. N O =

17. IO=

1. Running Commands and Control of Display

When the program is started, the display is turned on, but the main program is not running.
This is indicated by the word STOP in the lower left corner of the display.

of the main program, type RUN. While it is running, the word RUN appears in the lower left of

the display.

To begin execution

The main program may be stopped by typing STOP.
If the program so instructs, as the algorithm advances in the t ree , the branches which have

been searched a r e displayed.
before letting the algorithm advance one more node.

advances to the next occurrence of WAIT or ENTER BRANCH in the program and then waits for

the clock before going on. Instead of constantly advancing, the monitor will force the algorithm

to advance through exactly M of these steps if STEPS = M is typed, where M is any positive

integer, A single step will be executed
by typing G.

The speed at which steps a r e made is specified by using the SPEED = command.
argument should be an integer f rom 0 to 6.
Other speeds are 21-Nsec per step, where N is the argument of the command.
a special command which causes the algorithm to advance very rapidly.

is turned off, in order to allow the rapid speed.
SPEED = command with an argument of other than 7.

An internal clock in the computer waits a certain amount of t ime
When released by this clock, the algorithm

After M steps, the monitor re turns to the STOP state.

The
Speed 0 is the slowest, taking about 2 sec per step.

SPEED = 7 is
In this mode, the display

The display may be turned on again by the

If the algorithm is advancing rapidly, it may be difficult to stop at just the desired point in
The command GO TO N = has the same effect as RUN, except that when the node the t ree .

depth N reaches the value given a s the argument of this command, the monitor types READY
and stops the algorithm.
the algorithm, after every assignment statement which could increase N, code is automatically
inserted to match N against the stopping value of N and, if i t has been reached, control is
t ransferred to the monitor, stopping the algorithm.
not occur at the WAIT or ENTER BRANCH statements, a s does the stop from STEPS = or G.

This command is extremely useful after a SPEED = 7 or MODEO. In

It should be noted that this kind of stop does

Even SPEED = 7 is not fast enough to process large numbers of nodes; it is useful for ad-
vances of 5000 t o 10,000 nodes, which should take l e s s than 1 minute.
command MODEO should be used.

allows rapid execution of the algorithm, but the speed is such that 40,000 nodes may be advanced
in 1 to 2 minutes. The display may be turned on again by typing MODE1, followed by RUN, G

or STEPS =.

For longer searches, the
This command, like SPEED = 7, turns off the display and

The difference between MODEO and SPEED = 7 is that in MODEO the display does not keep
The SPEED = 7 a past history of the paths taken through the tree, while in SPEED = 7 it does.

command stops only the generation of the display list, the actual display, and any waiting for
the clock.

on the l is t structure describing the t ree .

Traps still occur from the main program so that the new branches may be entered

In MODEO, the display program is never entered.
When the display is restar ted (with a SPEED = 2 command) after being turned off by a

SPEED = 7 command, the display will consist of all branches searched; it will be just the same
as if th is point in the t r ee had been reached with the display turned on all the time.
display is restarted after being turned off by a MODEO command, the display will consist of only

the current branch, since no other data about the t r ee have been stored away by the display pro-

gram.

When the

If the algorithm now requires a re t reat in the tree, the display program is able to display

6 2

I

'this branch OX-~Y became i% hac beell programmed to look in tiie table given as argiment t~ the
DISPLAY INCREMENTS statement for the value of the metric increment along the branch.

a MODE1 command.
know the correct value for the total of the branch increments.
the variable list of the RESTART DATA.. . statement had to be the name of the variable whose
value was the total of the branch increments.

Display is actually restarted when the statement RESTART DATA.. . i s next executed after

This i S necessary because only at that point in the program does the display

This is why the first entry on

The monitor command OTHERS = has only two allowed arguments, 1 and 0. This command

turns on and off, respectively, the display of all the hypotheses at the present node in the tree,
provided the user has included the appropriate statements in the algorithm.

2 . Examination and Modification of Ordered Lis ts

The system normally displays the ordered list for the current value of N along with the

current contents of the GEN table. All numbers displayed here are octal.
other nodes may be displayed by using the light pen.
sired node is displayed, the light pen should be touched to the word DATA. A number of dots

will appear a t the top of the screen. If there a r e n bauds per branch, there will be a column

of n dots above each node depth, one for each baud (counting from the top).
pen to one of the dots will cause the corresponding ordered list to be displayed.
will remain until the word ERASE is touched with the light pen.

The ordered list for
After positioning the tree so that the de-

Touching the light
This display

The ordered list for a value of N may be modified by use of the monitor command DATA

AT N =.

has appeared in the program, otherwise, the argument is taken a s the +.dex on %he input data K.

Following this command, numbers should be typed in the same form a s the list would be displayed
(as octal numbers), that is,

The argument of this command is taken t o be the node depth if BAUDS PER BRANCH

<signal value) <space> (signal number) .
Each line of data should be terminated with a carriage return, except for the last line to be

entered, which should be terminated with a rub-out.
inally on the ordered list.
is in memory; the original list on DEC-Tape is not changed.
memory a r e those for bauds near the current value of N; hence, only these ordered lists may

be changed. The number of lists kept in memory varies with the list length, but it is always at
least 100 bauds on either side of the current value of N.

The numbers typed in replace those orig-

This replacement is made only on the copy of the ordered list which
The only ordered lists kept in

When changing an ordered list, the character I instead of a number may be typed, in which

case the value for this quantity w i l l remain unchanged.
BRANCH = indicates more than one baud per branch, the data for the f i r s t baud are opened for

change by the command DATA AT N =.

When the statement BAUDS PER

Succeeding bauds may be reached by typing

* <space> * <carriage return)

l (n - i) times, where I is the list length and n is the baud number.

3. Restart Commands

The algorithm may be restarted at some previous depth in the tree (at points for which re-
start data have been saved) by using the monitor command

63

RESTART AT N =

with an argument of the desired node number. If r e s t a r t data for this node have been saved, the
algorithm will res ta r t at the requested point; execution of the algorithm begins at the point in
the program after the statement

RESTART DATA EVERY . . . ,

If res ta r t data a r e not available for this node, the algorithm will be restar ted at the next lower
value of N f o r which res ta r t data have been stored.

res ta r t the algorithm at the last value of N for which res ta r t data have been stored.
The command REPEAT may be used to

Once the algorithm has been restarted at a given value of N, a la rger value of N may be

reached only through normal execution of the algorithm, i.e., the following sequence of commands
is illegal:

RESTART AT N = 1000

RESTART AT N = 5000 .

The second command will result in a res ta r t at the same place the first command started, since
the first command destroys the res ta r t data for all N > 1000.

The command

STORE

will cause restar t data to be stored the next t ime the statement RESTART DATA.. . is executed
in the algorithm.

4. Program Modification via DDT

The command DDT is used to enter the debugging routine called DDT. This allows modifica-

tion of the algorithm to be made; in particular, values of constants in the algorithm may be

changed quite easily. It is beyond the scope of this report to describe DDT completely (there
a r e manuals available from Digital Equipment Corporation), but a simple use is to change the

value of a variable which requires that the operator type the name of the variable followed by
/ (slash).
typed followed by a carriage return, the change i s accomplished. To leave DDT, type

(alt. mode> P.

integer only if it is followed by a decimal point.
the whole number is taken t o be type e.

The current value of the variable will be typed out by DDT. If the new value is then

(<ALT. MODE> is a key on the teletype.) DDT interprets a number a s decimal

If there is any number af ter the decimal point,

5. Miscellaneous Commands

If it is desired to end execution of the algorithm, the command

EXIT

should be used.
causes any output file which has been opened to be closed out after any automatic output gen-
erated by COMPUTE WAITING LINE, COMPUTE SEARCH DEPTH, PROB or LOG PROB.
Control is then t ransferred to the monitor.

This has the same effect a s executing the statement END in the algorithm. It

The command NO = is a general flag; the variable NO, which may be referenced by the

u s e r ' s program, takes on the value given as argument to this monitor command.

64

.
Tile corriti-xind IO = may have two zrgdmei~is, i and 0, which allow znd suppress irqxt-

output statements, respectively. When IO = 1 is used, all further 1/0 statements are ignored.

6 . Use of Light Pen

In addition to changing the display of the ordered list, the ilght pen may be used ior two

other purposes.

to the word MOVE, which is displayed on the screen. Immediately, an 8-pointed star will
appear on the screen. If the light pen is then touched to one of the tips of this star, the entire
display of the tree will drift in the direction to which this tip points, and will contine to move
as long as the light pen is touching the star. The speed at which the display drifts is set by the
SPEED = monitor command.
light pen to the word RESET which will have appeared on the dispiay.

First, the light pen may be used to move the entire display around by touching the light pen

The display may be reset to its former position by touching the

Second, the light pen may be used to intensify one path in the tree. Normally, the path
through the tree which leads to the current position (a s indicated by a small blob at the node for
the present value of N) is made brighter than all the rest.
be resolved which can be caused by two different paths crossing at a node.
paths which are not intensified may have the same difficulty.

tinguishable by touching the light pen to one of the nodes along one of the paths.
f rom the point touched back to the left edge of the display will then be intensified as long a s the
light pen is not removed.

This allows ambiguities of path to

However, other
These paths may be made dis-

The path leading

65

ANALOG
INPUTS

- LONG-
PARITY

+CONTROL

TRIGGER -
-

ADVANCE

RESET
T

t -t CLOCK
4 - FRAME

13-62-3663-1 I

%

IF r

DATA-LINE
DRIVERS 1

F L I P - F L O P '
REGISTER

L E V E L
CONVERTERS

0 E N 0 OF CONVERSION

Fig. B-1. Data-collection hardware.

TO TAPE
RECORDER

8 ; 6 5 4 3 Z l S P F C

FROM TAPE RECORDER

Fig. B-2. I/O buffer from recorder to PDP-6.

66

.
APPENDIX B

DATA-COLLECTION SYSTEM

The data-collection system is centered around a Precis ion Instruments Company model

PS-216-D digital tape r eco rde r which r eads and writes up to 16 t r acks of binary information on

a I-in.-wide tape.

r a t e a t 60 in./sec is one word eve ry 50 psec; for lower speeds, this is scaled proportionally.

Transport speeds are 60, 30, 15, 7+ and 3fin./sec. The maximum t r ans fe r

Equipment t o sample and hold (S-H) up t o ten analog voltages, convert them t o a digital

number, and write them on tape was designed. The detailed engineering and construction was

performed by Adage, Inc. A block diagram of t h i s equipment is shown in Fig. B-I.

An external t r igger pulse, supplied by the user, causes the 10 S-H devices t o sample the

voltages at the i r inputs.

lected speeds to match the speed of the r eco rde r .

plexer (MPX) t o advance to the next channel, thereby connecting the output of the next S-H unit

to the input of a 10-bit analog-to-digital converter (ADC).

10 psec af ter the MPX advances, and completes it 30 psec l a t e r . At this end of the conversion,

each output bit of the ADC which is a 1 causes the corresponding flip-flop in the nonreturn-to-

z e r o (NRZ) converter to be complemented. Each of these flip-flops drives one channel of the

tape r eco rde r , thus converting the level output of the ADC into the N R Z fo rm required by the

r eco rde r .

The t r igger pulse also turns on a clock, which runs at one of s i x se-
Each pulse f rom the clock causes the multi-

The ADC begins i t s conversion

At the end of the conversion, an (even) parity digit on the ten converter output digits is

produced and writ ten on the tape r eco rde r i n an eleventh channel.

on the tape, a 1 is written in a tweifth channel (the clock channel).
uses the presence of a 1 on this channel to detect a data word and t o provide automatic skew

correction .

Every t ime a word is written

On playback, the r eco rde r

The number of S-H units to be used is manually selected using a control on the MPX. When

the MPX senses that the l a s t channel t o be used has been reached, i t puts out an end-of-scan

pulse.

tudinal parity word.

The effect of this pulse depends on whether or not the user has elected t o wri te a longi-

The longitudinal parity word is an f l -bi t word whose bits a r e the sum modulo 2 of the cor-

responding bit in all the previous words written, and is formed by reset t ing the flip-flops in the

NRZ converter. If one of these flip-flops has written an even number of l ' s , it will already be

in the 0 state; hence, the r e s e t pulse will have no effect. If an odd number has been written,

it will be in the I state, and the r e se t pulse w i l l return it to the 0 s ta te , thereby writing a 1

on the tape r eco rde r .

If the longitudinal parity word is not to be written, the end-of-scan pulse tu rns the clock off

and nothing m o r e happens until the next t r i gge r pulse is received.

is t o be written, the clock is not turned off until t h i s is done.

If the longitudinal parity word

Coincident with the l a s t word to be written in a block (be i t the longitudinal parity word or

just the word fo r the l a s t MPX channel), a I is written in a thirteenth channel which is used as
a framing bit.

To connect the r eco rde r to the PDP-6 for playback, a special 1/0 buffer unit was designed

and constructed (see the block diagram shown in Fig. B-2).

The 1/0 requirements of the PDP-6 a r e handled by a 7-channel priority interrupt system;

One set of 36 all 1/0 devices are connected t o the central processor by means of the 1/0 bus.

67

l ines s e r v e s all I / O devices for t r a n s m i s s i o n of da ta in both d i rec t ions .

which r ece ives or t r a n s m i t s da ta is se l ec t ed by the (b inary) number on the seven device-se lec t ion

l ines ; each 1 /0 device is ass igned one of t he 128 poss ib le numbers . T o r eques t s e r v i c e f r o m the

cen t r a l p rocesso r , t he 1/0 device grounds one of the seven p r io r i ty in t e r rup t l ines .

p r o c e s s o r is not s e rv i c ing a n 1/0 device of h igher p r io r i ty , it will honor the r eques t by executing

the instruction found a t location 40 t 2n (oc ta l) , w h e r e n is the p r io r i ty in t e r rup t number . When

a n instruction t o r e a d in data f r o m a n 1/0 device is executed, t he cor responding number is put

on the device-selection l ines , and 1 psec later a 2.5-psec pulse a p p e a r s on the DATAI l ine .

pulse is the command for the data t o be put on the 36 da ta l ines . J u s t be fo re the end of t he

DATAI pulse, t he cen t r a l p r o c e s s o r r e a d s in the s t a t e of t h e data l i nes and then r e l e a s e s the

device-selection l i nes .

T h e pa r t i cu la r device

If the c e n t r a l

T h i s

The output of the tape r e c o r d e r is a 0 - t o 11-volt pu lse of 4 .5-psec dura t ion t o indicate the

p r e s e n c e of a 1.

and then fed to the enable inputs of a flip-flop r e g i s t e r .

d r ives a 3-psec delay, t he output of which is used t o r e a d the o the r 12 channels into the flip-flop

r e g i s t e r . If a 1 i s p re sen t on the f r a m e channel, one p r io r i ty in t e r rup t l ine is grounded; i f not,

another pr ior i ty in t e r rup t l ine is grounded.

a n exclusive OR par i ty t r e e .

p r e s e n c e of the p rope r device-selection number and the DATAI pulse p laces the 10 b i t s r e p r e -

sen t ing the output of the ADC on the data l i nes in b i t s 19 through 28, and a 1 in bit 0 if t h e r e

w a s a par i ty e r r o r .

a t the end of the DATAI pulse, the flip-flop r e g i s t e r is c l ea red .

T h i s input t o the 1 / 0 buffer is first conver ted t o a - 3 volt-to-ground pulse

The clock channel on the tape r e c o r d e r

T h e par i ty of t he r ema in ing 11 b i t s is computed in

If t h i s par i ty is odd, a n e r r o r was made by the r e c o r d e r . The

At t h e beginning of the DATAI pulse, t he p r io r i ty in t e r rup t l i nes a r e c l ea red ;

68

A?PENDiX C
DISPLAY OF TREE

Display of the t r e e through which the algorithm is searching presents some interesting

data-storage and retr ieval problems. Methods used a r e described in this appendix.

The unit of output for the tree display is a line segment representing one branch, specified

by the x- and y-coordinates of its s tar t ing point and the x- and y-increments of the branch. (The

x-increment is constant; the y-increment depends on the me t r i c increment for this branch.) The

PDP-6 display r equ i r e s two binary words of data to display each branch. The data words posi-

tion the electron beam t o the proper x- and y-coordinates and draw a line segment of the proper

length and s lope using the displayls l ine segment generator.

i t makes up a list of words f o r all the branches at once; then the display looks a t these words

one at a t ime as rapidly a s possible, and displays singly the branches specified by the data

words. If the picture

is t o be free of fl icker, each element of the display must be r e t r aced about 30 t imes pe r second.

Since the picture of the tree is constantly moving, new branches a r e being added as a resul t of

the sea rch process , and branches a r e disappearing or reappearing a t the edges of the display

because of drift of the t r ee , i t is necessary to make up a completely new display l is t every t ime

the display is to be retraced. This r equ i r e s an efficient s torage and retr ieval sys t em to reduce

the computation necessary t o make up the display l ist .

The program is organized so that

When all the words on this display l is t have been used, the display stops.

Data a r e s tored in a list s t ructure , which c a n be described a s a cross-threaded t r e e . A

s imple t r e e and its data s torage a r e shown in Fig. C-1.

256 entr ies provide entry data to the c r o s s threads of the t r ee . The pointer in the left half of

CPATH entry N indicates the beginning of a loop which contains data on all branches at depth

N in the t r ee .

the algorithm’s present position in the tree back to the origin of the t r ee .

this branch is shown separately in the right half of the CPATH entry.

in the CPATHY table gives the y-position of the s tar t of this branch; the x-position is known

f rom the index on the CPATHY table. All values of position a r e absolute (not relative t o the

display); hence, they do not have t o be changed as the t r e e moves. They a r e kept a s integer

numbers, scaled t o the s i ze of the display, as s e t by the SCALE statement in the special Fo r t r an

language.

Two tables, CPATH and CPATHY, of

This pointer denotes the particular branch at depth N which is on the path f rom

The y-increment for

The corresponding entry

The data for each branch require two words of storage. In the left half of the second word

a r e the data on the y-increment of this branch, stored in a form which the display w i l l accept

in o r d e r to draw a line segment of the appropriate slope.

pointer t o a second branch a t this depth in the t r ee .

value which must be added t o the y-position of the f i rs t branch t o obtain the y-position of the

second branch is stored.

this depth in the t r ee .

thereby closing the loop.

pointer, which indicates the location of the data for the branch terminating a t the beginning of this

branch. Th i s previous branch is obviously a t a depth in the t r e e one less than the original branch.

Thus, in Fig. C-1, f points t o c which points to a. These backward pointers define the t r e e

s t ructure of the stored data, giving information about how the individual branches a r e connected.

In the right half of this word is a

In the right half of the first word, the

The downward chain of pointers continues through all branches at

The l a s t branch has a pointer back to the first branch on the chain,

The left half of the f i r s t data word for a branch contains a ”back”

69

13-62-31961
1 2 3

Y T O T A L
CPATHY: I

0 I

VECTOR VECTOR VECTOR

Fig.

VECTOR

1-1001

f I I

VECTOR

(- 1001

C-1. List structure of the tree.

T h e portion of the t r e e which is to b e displayed is de termined by the position of the lower

le f t c o r n e r of the display in the t r e e .

which may be moved around through the t r e e .

CPATH at the index cor responding t o the x-position of the display s c r e e n c o r n e r and going down

the loop of branches, se lec t ing those branches whose s t a r t i ng value of y is on the s c r e e n . Since

the display shows 20 branches of depth in the t r e e , the 19 succeeding loops will a l so be sea rched

for branches to go on the display.

The display s c r e e n may thus b e thought of a s a window

The display l i s t m a y be generated by en ter ing

T h e backward poin ters are used to obtain data t o intensify any path des i r ed by r e t r ac ing it

(en ter ing it on the display l i s t a second t ime) .

t r e e , a branch extending forward f r o m th is node may be found by sea rch ing down the appropr ia te

loop.

po in te rs .

Given the x- and y-values of s o m e node in the

Once found, t he preceding b ranches may be found s imply by following the backward

A new branch in the t r e e is en tered as follows. The x-position of i t s s t a r t i ng point is given,

s o the loop on which i t w i l l go is known.

previously searched path in the t r e e which the a lgor i thm is sea rch ing again.

one of the branches on the loop will have the s a m e y- increment as th is "new" branch .

tion, its backward pointer w i l l indicate the top branch of the previous loop.

th i s top branch is on the cu r ren t path through the t r e e , and any advances through the t r e e at
th i s node must b e made f r o m the t ip of th i s branch .) Note a l s o that, for the lTnew" branch t o b e

matched with s o m e branch a l ready on the loop, it is insufficient that the two b ranches have the

But perhaps th i s is not a new branch; it could b e a

If it is an old branch ,

In addi-

(Remember that

7 0

' same y-increment and the same y starting point. This is one reason why the branches of the

?Inother reason is that, should it be desired to move current path a re at t h e top of the loops.

forward along the current path without specifying the y-increments of each branch, there is no
way to tell xvhich branch to take unless the correct one is known by placing it on the top of the

loop.
If it has been determined that the branch to be entered is indeed new, a new two-word block

of data is entered and the pointers a r e adjusted to make it the top branch of the loop.

CPATHY and CPATH entries must also be changed.

branch, only the pointer and values in CPATH and CPATHY must be adjusted to put the old

branch at the top of the loop.

The

If the branch to be entered is not a new

Storage for 512 branches has been provided (about 10 screen widths); when storage is

depleted, the oldest branches a r e removed a whole loop at a time to obtain storage space for

new branches.

taken modulo 256 before referencing these tables.

N and X - 256, every time an advance is made to a depth not reached before, the loop for

N - 250 is removed (i f it has not already been removed to provide storage room).

Since CPATH and CPATHY have only 256 entries each, all node depths a r e

To avoid overlap between the data for node

7 1

APPENDIX D
SYNTAX-DIRECTED COMPILER

The syntax-directed compiler takes its name f rom use of a syntax table to perform translation
f rom the input language (Fortran in this case) t o the output language (machine code acceptable to
the Midas assembler).
may be combined into complete Fortran statements.

Form?' For example, in Fortran I1 the syntactical elements "variable" and "arithmetic ex-
pression" may be put together with a - to form an "assignment statement." The rule would be

written

The syntax table gives the ru les by which characters of the input language

Entries in the syntax table a r e called ' trules" and are usually written in Bachus Normal

<assign. statement> ::= <variable> - <arith. exp.) .
Quantities in "metabrackets," < > , are called "metavariables," and a r e the syntactical elements
of the input language. The symbol ::= is
used to separate the "subject" of the rule (on the left) f rom the "definition," which consists of a
string of "components" (on the right). If a subject can be formed in more than one way, the
"alternatives" (each a string of components) a r e written on the right of the ::= sign and a r e
separated by I signs. F o r example,

Other symbols a r e characters of the input alphabet.

<let ter> ::= A ~ B ~ C ~ D .
Rules may be recursive, as in the example

<number> ::= <digit> I <number> <digit> .
F o r each alternative in a rule, there is a "production" - a list of actions to be taken by the

compiler which result in machine code being put out.
A syntax-directed compiler scans the string of symbols in the input language and combines

them according to the ru les in the syntax table, and outputs the resul ts of the productions asso-
ciated with the particular rules which were used to combine the input characters.
of the rules i s performed by a parse algorithm, which parses the Fortran statement much as an
English sentence may be parsed into subject, verb, etc.

operation of algorithms which may be used, but the reader should refer to Refs. 1 6 through 21 .

Below i s an example showing how the statement A - B + C is parsed using the following rules:

This scanning

We wil l not go into the details about

<t-> ::= t I -
<exp.> ::= <name> 1 <exp.> <t-> <name>
<name> ::= A ~ B ~ C

<as.> ::= <name> + <exp.)

A - B t C

<name>
I

A

<exP .>
// -c

B t

<+ -> <name>
I

C
I

<exp .>
I
B

<name>
I
B

t

7 2

The really difficult aspect of the sjztax-dL-ected conipiler is the creation of suiia'oie forms
for the productions of the rules which will result in efficient machine code, and which wil l not
require that the rules themselves reflect the structure of the machine for which the compiler
is intended. It is in this a rea that compiler research is currently being performed.

Rules f o r the PDP-6 syntax-directed compiler a r e not written in the Bachus Xormal Form

just described. Instead, the rules a r e reversed; the subject is on the right, and each alternative
is written as a separate rule. For example,

becomes four rules:

A =:: letter)
B =:: Iletter)

D =:: <letter> .
Since in each of these rules we know that the last metavariable on the right is the subject of the
rule, we may omit the =:: signs.
the right and enclosed in brackets [1.

(1 =:I (letter?

The production associated with each rule is then written on

Productions are formed from three distinct elements: (1) symbols of t h e output alphabet,
(2) functions, and (3) the productions associated with the metavariables, if any, which are
components of the rule.
identifying the rule.
be any number of arguments, or none at all), and ! terminates the function. A function may
cause symbols of the output alphabet t o be inserted in its place, or it may take actions which
influence other functions. The components of the rule a r e referred to as #m!, where m is a

decimal number and means that the production associated with the mth component (counting from
the right, but not counting the subject of the rule) is to be inserted in its place.

Functions are written as $n\arg1\arg2!, where n is a decimal number
The character \ is used t o separate arguments of the function (there may

A very simple example of a rule added to the syntax table is

SHIF TLEF T<INUMB><NS> [MOVEI 15, # 1 !
PUSHJ i,%SHFTL""
1

The statement

SHIFT LEFT 2

causes the number 2, which is the production of the metavariable <INUMB> (meaning integer
number), to be substituted for #l! when the production of <NS> is evaluated, resulting in the two
machine instructions

MOVEI 15,2
PUSHJ 1,YoSHFTL"

being put out.

values of any variable:
A more interesting, yet still simple, rule is that for collecting a histogram of log2 of the

LOGPROB <NAME><I>[MOVEI $9!, %PR
HRLM $9!, .PRf l"
JRST .+257
%PR: BLOCK 256
$4 \ # 1 ! <LEFT > [MOVEM $9 !,
LDB 15, lf[XWD 331000"',$9!"]
AOS %PR(15)

1 ! I'

I !]

73

The statement LOG PROB A will cause A to be substituted for # I ! (NAME means r ea l
The function $9! substitutes a number for itself which is the number of the

~

variable name).
accumulator which the machine is to reference; this number is set to 3 at the beginning of each
statement and can be increased by one by use of $15!, and decreased by one by use of $161. The

function $4 causes the new rule which is given as its argument to be added to the syntax table.
The rule added is

A<LEFT>[MOVEM $9!, A" '
LDB 15,"[XWD 331000" ' ,$9! ' ']
AOS YoPR(15)
I

In the original rule, inside the production of the rule to be added, we used ' # I ! to re fer to

what became A.
rule LOGPROB<NAME> rather than to a component of the rule in whose production this ' # I !

appears. However, when we want the character to be put out, we must prefix it with 'I to
indicate that it is to be treated in this manner.
hence must be preceded by when they a r e to be put out, a r e [1, < > , -, #, $, ! and itself.

The production of the rule LOGPROB<NAME> resul ts in the following output in addition to

The character ' is used to signify that this #1! r e fe r s to a component of the

Other symbols which have special meaning,

the insertion of the new rule:

MOVE1 3, O/PR
HRLM 3, .PR1'
JRST .i-257
%PR BLOCK 256

The f i r s t two instructions notify the I/O program that the histogram is to be printed out auto-

matically, and the last two reserve a block of 256 regis ters for the histogram.
The new rule which has been inserted works in conjunction with the rule

<LEFT> <-> < E X P > ? <ASI> [# 2!# 4!]

which is a rule for the construction of an assignment statement. (The character ? is inserted

by the compiler at the end of each statement as a termination character before the syntax table

is applied to the statement.)
The statement

A - B

causes the production of <EXP> (expression) to be

MOVE 3 , B '

and the production of <LEFT> with the aid of the new rule is

MOVEM 3 , A '
L D B 15, [XWD 331000 ' ,3]
AOS O/oPR(15)

Therefore, the production of <ASI> is

MOVE 3 , B'
MOVEM 3 , A '
LDB 15, [XWD
AOS OJoPR(15)

331000', 3 1

74

Befcre the zew x l e was added, <LEFT> i i - ~ i l d have been formed using anctt'ner rule, EO

that the production of <ASI> would have been

MOVE 3,B'
MOVEM 3,A'

Thus, the effect of the new rule is to append two machine instructions to the code for the assign-
ment statement.
part of the value of A, and the second instruction adds one bit to the entry in the table %PR
whose index is the contents of accumulator 15.

The f i r s t instruction loads into accumulator 15 the 8 bits from the exponent

ACKNOWLEDGMENTS

1 would l ike to express my sincere appreciation to Professor J.M. Wozencraft for the

guidance and encouragement he has given me during this work. I wish to thank my

readers, Professors R.M. Fano and J.B. Dennis, for their help, particularly in the

prepomtion of this dissertation. I also thank Professor Fano for making the PDP-6

computer at Project MAC avai lable to m e .

Thanks a r e due to the Research Laboratory or E!ectronics for the fccili?ies provided

me, and to the National Science Foundation for its financial support throughout my

graduate studies. My thanks are also d u e to Lincoln Laboratory for its continued

interest in this project.

75

REFERENCES

1. C.E. Shannon, "A Mathematical Theory of Communication," Bell System Tech. J. - 27, 379 (1948).

2. J.M. Wozencraft and B. Reiffen, kquent ia l Decoding (M.I.T. Press and Wiley, N e w York,
1961).

3. R.M. Fano, "A Heuristic Discussion of Probabilistic Decoding,'' Trans. IEEE, PGlT - IT-9, 64
(April 1963).

D. Forney, "Concatenated Codes," Sc. D. Thesis, Department of Electrical Engineering, M. I . T.
(June 1965).

5 . J.M. Wozencraft and I.M. Jacobs, Principles of Communication Engineering (Wiley, New York,
1965).

6. H. Yudkin, "Channel State Testing in Information Decoding," Ph. D. Thesis, Department of
Electrical Engineering, M. I .T. (September 1964).

K. E. Perry and J.M. Wozencraft, "SECO: A Self-Regulating Error Correcting Coder-Decoder,"
Trans. IRE, PGlT - IT-8,. 128 (1962).

8. P. R. Drouilhet, Jr., "The Lincoln Experimental Terminal Signal Processing System," IEEE Annual
Communications Convention , Boulder, Colorado, 7-9 June 1965.

P. Rosen and R.V. Wood, Jr., "The Lincoln Experimental Terminal," IEEE Annual Communications
Convention, Boulder, Colorado, 7-9 June 1965.

G. Blustein and K. L. Jordan, "An Investigation of the Fano Sequential Decoding Algorithm by
Computer Simulation," Group Report 626-5, Lincoln Laboratory, M. I . T. (12 July 1963),
DDC 41 2632, H-525.

"Programmed Data Processor-6 Handbook," Digital Equipment Corporation, Maynard, Mass. (1964).

R. Kennedy and J.M. Wozencraft, "Coding and Communication," paper presented at URSl
Conference, Japan, 1963.

13. M.H. Check and B. Reiffen, "A Note on Sequential Decoding Applied to Large Alphabet
Incoherent Channels - Rcomp Determination," Group Report 656-6, Lincoln Laboratory, M. I . T.
(31 May 1963), DDC 410883, H-519.

J. E. Savage, "The Computation Problem with Sequential Decoding,'' Technical Report 371 ,
Lincoln Laboratory, M.I.T. (16 February 1965), DDC 621713.

"PDP-6 Programming Manual - FORTRAN I I Language," Digital Equipment Corporation,
Maynard, Mass. (1965).

E.T. Irons, "A Syntax Directed Compiler for ALGOL 60," Commun. ACM 4, 51 (1961).

, "The Structure and Use of the Syntax Directed Compiler," in Annual Review

4.

7.

9.

10.

1 1.

12.

14.

15.

16.

17.
o f Automatic Programming, Vol. 3 (Pergamon Press, Oxford, 1962), p. 245.

A. Bastian, Jr., "A Phrase-Structure Language Translator," Report AFCRL-62-549, Air Force
Cambridge Research Laboratories, Bedford, Mass. (August 1962).

T.E. Cheatham, Jr., and K. Sattley, "Syntax Directed Compiling," Proceedings of the Spring
Joint Computer Conference (Spartan, Baltimore, 1964), p. 31.

R. 5. Ledley and J. B. Wilson, "Automatic-Programming-Language Translation Through
Syntactical Analysis," Commun. ACM - 5 , 145 (1962).

S. Warshall, "A Syntax Directed Generator," Proceedings of the Eastern Joint C o r n p a
Conference (Macmillan, N e w York, 1961), p. 295.

J. W. Bachus, "The Syntax and Semantics of the Proposed Internotional Algebraic Language
of the Zurich ACM-GAMM Conference,'' Proceedings of the International Conference on
Infomation Processing, UNESCO, Paris, June 1959, p. 125.

18.

19.

20.

21.

22.

7 6

Security Classification
DOCUMENT CONTROL DATA - RLD

13. 1965
)I. CONTRACT OR GRANT NO.

DA36- 0 39 -AMC-0 32 00 (E)
& PROJCCT NO. 200-14501 -831F

. . Research Laboratory of Electronics, M. I. T. lf lPd
7.6 GROUP

None
I REPORTTITLE

An Experimental Facility for Sequentid Decoding

88 I24

Technical Report 450
9.. 01101NATOR'S R E P O R T NUUSeR(s)

i. REPORT DATE 7 r . T O T A L NO. O F PACES 7b. NO. O F R E P I

NSF Grant GP-2495
NIH Grant MH- 04737-05
NASA Grant NsG-334

9 b. O T w c R R PORT UWSJ (Anv othmr mnbwn he# .UT b w mmlmd
hh rm&
ESD-TDR- 65-442; Lincoln Laboratory

sG-496 1 T-t 396
I O . A V I ILA~ILITY/LlMITATlON NOTICES

Qualified requesters may obtain copies of this report from DDC

11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

None Joint Services Electronics Program
thru USAECOM, Fort Monmodth, N. J.

1

3 ABSTRACT

This report describes the system design and implementation of a facility for
the experimental study of sequential decoding that may be used at M. I. T. by
graduate researchers in communication theory. Flexibility and ease of use are
the primary requirements of this system.

Through investigation of the characteristics of sequential decoding and likely
problems to be studied led to a system based upon the MAC PDP-6 computer.
A portable data-acquisition system, consisting of a digital tape recorder and
analog-to-digital conversion equipment, is provided to make available to the
computer the outputs of experimental demodulation equipment. The experimenter
can decode the acquired data sequentially in accordance with an algorithm specifie
and easily written by him in a version of Fortran modified for this purpose. A
display system is used for man-machine interaction.

results are described.
The system has been successfully implemented and tested, and experimental

UNCLASSIFIED
Security Classification

mn
Classification

KEY WORDS 14

sequences
decoding
communication
information theory

Fortran
algorithms
man-machine
signal- t o-noise ratio

PDP- 6

I INSTRUCTIONS

1. ORIGINATlNG ACTIVITY Enter the name and addresa
of t he contractor, subcontractor, grantee, Department of D e
fense activity or other organization (corporate author) lsmuing
the report.
2s. REPORT SECUWTY CLASSIFICATION Enter t he over-
all securitv classification of the report. Indlcate whether
“Restricted Data” la included. Marklng l a to be In accord-
ance with appropriate security regulations.
2b. GROUP: Automatic downgradlng Is specified in DoD Di-
rective 5200.10 and Armed Forces Industrial Manual. Enter
the group number. Also, when applicable, show that optional
markings have been used for Group 3 and Group 4 as author-
ized.

3. REPORT TITLE: Enter the complete report t l t l e i n all
capital let ters. T i t l e s in all c a s e s should b e unclassified.
If a meaningful title cannot be selected without c l ams i f i c s
tion, show t i t le classification in dl capi ta ls In parenthesis
immediately following the title.

LINK A LINK 4 L INK C

nOLs W T R 0 i . L W T ROLE

lmpoaed by security clamaificatlon, uslng standard statements
s u c h as:

(1)

(2)

(3)

“QmIified requesters may obtain cop les of this
report from D D C ”
“Forelgn announcement and dismemlnatlon of thlm
report by DDC is not au thor i zed”
“U. S. Government agencies may obtain cop le s of
this report directly from DDC. Other qualified DDC
usera mhall request through

“U, S. military agencies may obtaln coplem of thls
report directly from DDC Other qualified umers
mhall request through

e ,

(4)

I
~ ~~

(5) “All distributlon of t h l s report Is control led Qual-
ified DDC user. shall request through

,,

Give the inclusive d a t e s when a Specific reporting Period

4. DESCRIPTIVE NOTES If approprlate, enter the type of
report, e.g., interim, progress, summary, annual, or final.

cate th i s fact and enter t h e price, i f known, I covered.

or in the report.
5. AUTHOR(S): Enter the name(s) of author(s) shown o n

E n t a las t name, first name, middle lnltial.
If zi l i tary, show rank and branch of service. The name of
the principal d tho r is an absolute minimum requirement.

G. REPORT DATI: Enter the da te of the report as day, ing for) t he research and development. Include address.
month, year; or month, year. If more than one date appears
on the report, use d a t e of publication.
7.3. TOTAL NUMBER OF PAGES: T h e total page count
should nonal pagination enter the
number of pages containing information

11. SUPPLEMENTARY NOTES: Use for additional e x p l a n e
tory notea
12. SPONSORING MILITARY ACTIVITY: EMer the name of
t h e departmental project office or laboratory sponsoring (pay-

13. ABSTRACT: Enter an abstract giving a brief and faclual
summary of the document indicative of the report. even though

port. If additional s p a c e is required. a continuation s h e e t shal l
be attached.

it may a l so appear elsewhe* In the body of the technical re-

I be UnclaGsilled. Each narsmraah ai the ahrlmrt ahnll r n A
It IS highly desirable that t he abstract of c l r s s l f i r d reports 76. NUh4BER OF REFERENCES Enter the total number of

references cited in t h e report.
~ . ~ ~ ~ ~ . - ~ . - ~ . . -_ -..- -....

Sa. CONTRACT OR GRANT NUMBER: If appropriate, enter
the appl icable number of the contract or arant under which

an indication Of t he military security c h a s i f i c a t l o n of the in- I formation in the paragraph, represented as ITS). fs). fc). I V) - . .
There is n o limitation on t he length of the abatrsct . HUW-

ever, the suggested length is from 150 to 225 words.

14. KEY WORDS: Key words a re technically meaningful terms
or short phrases that chsracter lze s report and may be used YE
index entries for cataloging the report. Key words must be
selected SO that no aecurity c lassi f icat lon is required. Identi-
f iers. such as equipment model designation, trade name. mili ts?
project code name, geographic location. may be used a s key
words but Will b e followed by an indication O f technical con-
text* The aasknmen t Of links. rules, end weights I s optiunul.

t he reporl w a s written.
Sb, &, & 8d. PROJECT NUMBER Enter the appropriate
military department identification, such as project number,
subproject number, system numbers. task number, etc.
9a. ORIGINATOR’S REPORT NUMBER(S1: Enter the offi-
cia1 report number by which the document will b e identifled
and controlled by t he originating activity. This number must
be unique to thls report.
96. OTHER REPORT NUMBER(S): I f the report has been
assigned any other rcpcrt numbers (either b y the originator
or by the sponsor), also enter this number(.).
10. AVAlLAEILITY/LlMITATION NOTICES Enter any l l m
itations on further dissemination of the report, other than those

~- ~

UNCLASSIFIED
Security Classification

